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A new class of nonlocal constanta for the linearized Vlasov equations is presented. These are con­
stanta which, in general, are not expressible as simple phase-space integrals of a locally defined inte­
grand. The relevance of these constanta to stability considerations is indicated. 

I. INTRODUCTION 

I T is our purpose here to demonstrate some new 
constants of the linearized motion of Vlasov' 

plasmas. The search for such constants is strongly 
motivated since knowledge of them is of great value 
in determining questions of stability,1-3 but we do 
not address ourselves, in the main, to such stability 
questions in this paper. 

The constants we seek are quadratic forms in 
the first-order perturbations of the field quantities 
from their equilibrium values. We give two deriva­
tions, both different from that employed in Ref. 2 
in that we here deal only with the equations of 
motion for first-order perturbations rather than, as 
there, eliminate explicitly second-order perturbations 
of the field quantities I, E, B between the energy 
of the system written to second order and the general 
constant of the full nonlinear motion 

.. This work accomplished under the auspices of the United 
States Atomic Energy Commission. 

t Permanent address: Plasma Physics Laboratory, Prince­
ton University, Princeton, New Jersey. 

1 See, e.g., 1. Bernstein, Phys. Rev. 109, 10 (1958), Ap­
pendix 1. 

1M. Kruskal and C. Oberman, Phys. Fluids 1, 275 (1958). 
See also T. Fowler, J. Math. Phys. 4, 559 (1963). 

I C. Oberman and J. Dawson, Phys. Fluids 7, 773 (1964). 

written to second order. Here G is an arbitrary 
functional of I, the distribution function. The use 
of the latter constant required that the equilibrium 
distribution function be a monotonic function of 
the particle energy. No such restriction is imposed 
in the present derivations. 

We consider chiefly in this paper only perturba­
tions from a spatially uniform equilibrium of an 
unbounded plasma. We treat only electronic motions 
with the ions regarded as a background of uniform 
density (the multispecies situation is of course a 
trivial generalization). However we also show that 
we can find at least one constant associated with 
the perturbations of the unidimensional nonlinear 
static solutions exhibited by Bernstein, Greene, and 
Kruskal. 4 Future papers shall deal with the general­
ization to nonuniform equilibria, formation of 
energy-type principles involving these constants, and 
a generalization of the energy principle of Ref. 2 
achieved by now removing the monotonicity condi­
tion on the energy dependence of the equilibrium 
distribution function per tube . 

II. FIRST DERIVATION 

This first method of derivation is less straight­
forward than the second and was discovered later, 

• 1. Bernstein, J. Greene, and M. Kruskal, Phys. Rev. 108, 
546 (1957). 
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but it leads to the final results much more quickly, 
as well as having the advantage of not requiring 
Fourier transformation of the space variables. This 
last feature is desirable when one seeks the general­
ization to spatially inhomogeneous equilibria. The 
second, more straightforward, derivation is reserved 
for the Appendix. 

We begin by writing down the equations governing 
the perturbed field quantities, t(x, v, t), E(x, t), 
B(x, t) 

at at e ( v ) ag - + v·- + - E + - xB .- = 0 at ax m c av ' (1) 

(a/ax)·E = 41T0", (2a) 

(a/ax)·B = 0, (2b) 

aB/at = -c(a/ax) xE, (2c) 

aE/at = c(a/ax) xB - 41Tj. (2d) 
Here 

0" (x , t) = e I d3vt, (3a) 

j(x, t) = e I d3v vt, (3b) 

and g(v) is the equilibrium distribution function 
with f d3v g = no. We envisage either an infinite 
domain, in which case all perturbations of physical 
quantities are taken to die away sufficiently rapidly 
at infinity, or else a periodic system with all perturba­
tions having zero spatial mean. 

Let us introduce the potentials A(x, t) and q,(x, t) 
with 

aq, 1 aA 
E = -- ---ax c at ' 

B = (a/ax) xA. 
Then (1) reads 

at + v.at _ ~ (aA + V.~A).ag 
at ax mc at ax av 

e ag a ( 1) + --.- -q, + -A·v = o. 
m av ax c 

Define 
J == t - (e/mc)A·ag/av 

and 

XII == x.ag/lagl· av av 
Then (5) may be rewritten as 

m (aJ a -) 
lag/avl at + V· ax f 

(4a) 

(4b) 

(5) 

(6) 

(7) 

Now introduce a primitive F by 

J = aF/axn· (9) 

The independence of the results to the arbitrariness 
in F is shown in Sec. III. A quadrature on (8) then 
gives 

lagiavl (!: + V· a:x) + e( -q, + ~ A.V) = O. (10) 

Now multiply (8) by !v·aF/ax, operate on (10) 
with Hv·a/ax, add the resulting equations together 
and integrate over the phase space. A simple integra­
tion by parts yields 

~ m if d3 d3 Jv·aF/ax 
at 2 x v lag/avl 

+ e II d
3
x d

3
v Jv. :x ( -q, + ~ A.V) = o. (11) 

If we now employ (6) and (8) in the second term 
of (11), with K denoting m/2 times the first of the 
integrals we find, 

aK if 3 3 ( e A ag) aq, at - e d x d v f - mc . av V· ax 

+ ~ if d3x d3V[aJ + .£ ag.~ 
c at m av ax 

x (-q, + ;A.V) JA.V = o. (12) 

Addition and subtraction of 

~ if d3x d3v V· aA 
c at 

and utilization of (3a) and (3b) yields 

aK I d3 E . + e a I d3 
• A at+ X·J cat XJ· 

+ if d3x d3V['£A. ag v.aq, _.£ ag.aq, A·v 
me av ax me av ax 

e2 aA ag e2 ag a ] 
- -2 -.- A·v + -2 -.- A·vA·v = o. (13) 

me at av me av ax 
Integration by parts with respect to v shows that 
the first two terms in brackets cancel, while the 
last is a perfect x derivative and hence vanishes 
upon integration. Finally integration by parts with 
respect to v on the remaining term in the brackets 
and the use of (2c) and (2d) on the second integral 
gives 

!t {K - I d3X[8~ (E2 + B2 - ~i A2) 

+ e~ (-q, + !A.V) = o. aXn c 
(8) - ~j.A]} = O. (14) 
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We have thus exhibited our first constant. Before 
proceeding further we rewrite K in a suggestive 
alternative form by noting that 

or, with u == Xu - X., 

F = f", l(x + ueu, v, t) du, 

where 

Therefore 

F = i"" dsl(x - s aavY ,v, t). lay/avl 
Hence the constant can be written as 

x i'" dsj(x, v, t)v':xl(x - s ::' v, t) 

(15) 

(16) 

(17) 

- I d3x[S~ (E2 + B2 - ~; A2) - ~ j.A} (IS) 

A second (vector) constant is obtained by mul­
tiplying (S) by !aF lax, operating on (10) with 
la/ax, then adding the two equations and integrating 
over the phase space. There results 

m a if 3 3 - aF lax 
2" at d X d v f lay/avl 

+ e II d3
x d

3
v 1 :x ( -I/> + ~ A.V) = O. (19) 

If we denote m/2 times the first integral by P and 
employ (6), we have 

ap _ e if d3x d3V(f _ ~ A. ay) al/> 
at me av ax 

+ ~ II d3x d3v(f - ~eA'::)(:xA)'V = O. (20) 

Both terms in (20) involving ay/av vanish upon 
integration. Thus 

ap I 3 al/> e I 3 a - - d X 0' - + - d X f - A·v = 0 at ax e ax ' (21) 

which may quickly be rewritten as 

ap I 3 al/> 1 I . -- dxO'-+- d3xJxB at ax e 

+ eif 3 3 a - d X d v fv·- A = O. 
e ax (22) 

We now transfer the x derivative in the last term 
onto f and employ (1) to obtain 

ap I d3 al/> 1 I 3 • at- xO'ax+~ dXJxB 

+~IJ d3Xd3v[:~+e(E+~xB).::JA=0. (23) 

The term involving ay / av goes out upon velocity 
integration, so that, employing (4a), we have 

ap 1 a I 3 at + ~ at d xO'A 

+ I d3X[O'E + ~ j XBJ = O. (24) 

If we now employ all the Maxwell equations (2a), 
(2b), (2c), and (2d) in the last integral, we have 

:t [p + ~ I d3x O'A - 4!e I d3x E xB ] = 0, (25) 

or finally 

1"" - a -( ay ) x 0 ds f(x, v, t) ax f x - s av ' v, t 

- ~ I d3x [!EXB - O'A} (26) 

III. INVARIANCE PROPERTIES 

We now demonstrate two invariance properties, 
gauge invariance and invariance under the displace­
ment of F, the primitive from which 1 is derived. 
It is sufficient to prove these invariances under 
infinitesimal transformations, with the group prop­
erty completing the proof to finite transformations. 
First the gauge invariance. 

Let 

A-A + oA, 
I/> - I/> + 01/>. 

(27a) 

(27b) 

That Band E (and f) remain unchanged requires 

(a/ax) x oA = 0, 
aol/> + .!. aM = 0 
ax e at . 

Therefore there exists a N such that 

oA == aot/;/ax. 
Note that 

aA·ay/av aot/; 
lay/avl = ax •. 

(2Sa) 

(2Sb) 

(29) 

(30) 
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If we employ (29) and (30) in (14) we find 

_~ f'r d3x d3v aa", v. aF 
2c J ax. ax 

e f'r 3 3 ( e A~) aa", 
- 2c J d x d v f - mc • av V· ax 

+ I d3x[ ~ :~ A + ~ j J . aA. (31) 

Two integrations by parts, first with respect to x 
and then with respect to Xu show that the second 
integral is equal to the first, hence 

&2 = -~ II dax d3v fv, aA 

+ ~:2 II dax dav A.:: V· aA 

+ I dax [i1r :~A + j}aA. (32) 

Finally an integration by parts with respect to v 
in the second integral shows that OC2 = O. Analogously 
oCl = O. 

The invariance under change of primitive 

F ~ F + of(xJ.' v, t) 

is quite trivial. 

But J = aF /axo so that 

m f' r 3 3 1 aF aoF 
aC2 = 2" J d x d v jag/avj ax. V· ax . (34) 

Transfering the Xu derivative nullifies the integral. 
Likewise, oCl = O. 

IV. REMARKS AND SAMPLE STABILITY PROBLEM 

These constants, at least in their present un­
generalized form, are intimately related to the 
second-order momentum and energy constants of 
the system 

II2 = m II d3
x d3

v vMx, v, t) 

+ ~C I d3
x E xB, (35) 

and 

82 = ; II d3x d
3
v v

2
f2 + 811r I d

3
x(E2 + B2), (36) 

since one sees the electromagnetic momentum and 
energy as ingredients of (26) and (18). The existence 

of other constants as in Ref. 2 between which and 
the second-order momentum and energy the ex­
plicitly second-order particle momentum and kinetic 
energy may be eliminated, has not been demon­
strated. Since they are not revealed by the rather 
more systematic derivation given in the Appendix, 
their existence is, in general, doubted. 

To give some insight into the physical significance 
of these constants as well as an inkling of their 
power in stability considerations let us consider the 
situation when g(v) = h[!(v - VO)2], i.e., when the 
equilibrium distribution function is isotropic around 
some center Yo. Let us consider the combination 
of constants 

_ V. - m f'r d3 da f{v - Vo)·aF/ax 
C2 0 Cl - 2 J x v jag/avj 

+ ~ I dax (j - uVo)·A 

- 1- I dax [E2 + B2 - wi A + 2E.VO XBJ. (37) 
81r C C 

If we note that 

(v - yo) a 1 a 1 a 
jag / av j • ax = h' eu' ax = h' ax. (38) 

and employ (6) and (9), then (37) becomes 

- ~ II d3
x dav A·(v - Vo)f 

+ 2::2 II d
3
x d

3
v A.:: A.(v - Yo) 

+ ~ I dax (j - uVo)·A 

- 1- I d3x [E2 + B2 - w~ A + 2E.Vo XBJ. (39) 
81r C C 

Now all terms involving A cancel and we are left with 

C2 - VO,cl = ; II dax d
3
v ~: - 8~ I d

3
x 

X [(E + ~o xB r + B2 - ? (VO XB)2} (40) 

This expression is just a slight generalization of the 
"free energy" used by Newcomb (see Appendix I, 
Ref. 1) to show stability of the Maxwell distribution. 
It shows at once that any distribution which is a 
decreasing monotone (about any shifted velocity yo) 
function of the particle kinetic energy (h' < 0), is 
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stable since the quadratic form (40) is (negative) 
definite. Note that in this elementary situation the 
integrand of the first integral appearing in (42) has 
become local. 

V. GENERALIZATIONS 

(A) Actually each of these constants is just one 
member of a continuous family of constants the 
existence of which reflects the invariance of the 
equilibrium under spatial translations. An alternate 
aspect of this invariance is that in any quadratic 
global constant, there is no coupling of the different 
k modes resulting from Fourier transformation on x 
(see Appendix). Namely, if preceding (11) and (19) 
we displace the x variable in the equation for F 
by a constant ~ we find the derivations still go 
through, so that we have the generalized constants 

C1 = i: d3t vw.{; II d3
x d

3
v L" ds 

X :~ (x + ~ - 8 :: ,v, t)f(X, v, t) 

- ~ I d3x [L. E(x, t) xB(x + ~, t) 

- IT(X, t)A(x + ~, t)]} , 
and 

C2 = i: d3t sw.{; II d3
x d

3
v L" d8 V· :~ 

X ~ + ~ - 8 :: ,v, t)f(X, v, t) 

- I d3
x 8~ (E(x, t)·E(x + ~, t) 

+ B(x, t)·B(x + ~, t) 

- (w~/c2)A(x, t). A(x + ~, t» 

- (l/c)j(x, t)·A(x + ~, t)]} , 

(41) 

(42) 

where V and S are arbitrary vector and scalar func­
tions of ~, respectively. This generalization applies, 
of course, only for the spatially homogeneous equilib­
rium. [In (41) there are actually three such constants 
corresponding to the three independent components 
of V.] 

(B) The constants (18) and (26) persist, with 
slight modification, in a completely relativistic 
theory, for if we write down the relativistic gen-

eralization of (1), 

af(x, p, t) + (P). at 
at v ax 

+ e( E + ~ x B). au:) = 0, 

with 
p == (1 - V

2
/C

2)-tmv, 

we find corresponding to (26) and (18) 

1 f'r d3 d3 J;\lF. 
Cl. = 2 J x p lag/apl 

+ .! I d3
x [ITA - .L E XB] 

C 411"' 

- .!f~r d3 d3 J.v(P)·\lF. 
C2. - 2 J x p lag/iJpl 

+ ~ I d3x [j.A _ (E
2

;; B2)] 

+ ;;2 II d3
x d

3
p g(P)A· ~ ·A. 

Here, from (44) 

av/ap = C(p2 + m2c2)-I[(P2 + m2c2)I - pp], 

while 

1. = f - (e/c)A·ag/iJp, 

and F. is defined by 

1. == aF./ax •. 
I is the unit dyadic. 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 

(0) It is readily verified that if one considers 
perturbations about the unidimensional nonlinear 
electrostatic solutions of Ref. 4, i.e. about the solu­
tions of 

v ag(x, v) _ ~ a1> ag(x, v) = 0 
ax max av ' (50) 

and 

~:~ = -47re[I dv g - no] ' (51) 

one finds a constant corresponding to (18), 

m 1'r d3 d3 Vf2 1 I d3 (acp)2 
C2 ="2 J x v ag/av - 811" x ax ' (52) 

where f and cp are the perturbed distribution function 
and electrostatic potential respectively. No analog 
of Cl is found. This constant C2 is of particular value 
in studying the stability of plasma sheaths . .5 

Ii See e.g., M. N. Rosenbluth, L. M. Pearlstein, and G. 
Stuart, Phys. Fluids 6, 1289 (1963). 
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(D) So far we have dealt with constants which braced by 
are local in the velocity space. There is an important 
generalization away from this. To illustrate this C = III d3k d3v d3

ij Ak(v, v)Mv)f-k(V), (61) 
particular generalization we shall deal for simplicity 
in this subsection with perturbations of a spatially where without loss of generality we may take 
uniform plasma and consider only the electrostatic 
interaction. In k space we then have A_k(v, v) = Ak(v, v). (62) 

kxEk = o. 

(53) 

(54) 

(55) 

If we proceed as in the appendix we find not only 
the aforementioned constants with B = A = 0, but 
also a third constant 

C3 = J d3
k B,(k)·k J d3v[ m k:~~;;V M-k 

- ie{Ek.vf-k - E_k,vfk) 1 (56) 

Are there even more constants if we appropriately 
generalize the form (AI)? Before going into detail 
we point out there must be more by noting that 
we may first mUltiply (53) by o(u - k.v), where 
k = k/k, and then integrate over the velocity space 
to obtain 

aj;,(u, t) + ikul- + ~ E .k ag = 0 
at k m k au ' 

(57) 

(58) 

where the operation indicated with a tilde is given by 

Mu, t) = J d3v Mv, t) o(u - k.v), etc. (59) 

Here 0 is the Dirac delta function. We may now 
construct constants by the previous method on this 
set of equations, e.g., 

C2 = J d3k B2(k{J du ~;f(~)k - 1!~2J. (60) 

This set of constants is in a sense more powerful 
in that one can show at once that any isotropic 
(not necessarily monotone!) equilibrium g(v) is 
stable. [For g(u) is monotone decreasing in u, since 
it is readily shown that every uniformly populated 
spherical shell in v space projects into a symmetric 
positive block in u space.] 

All types of these constants so far considered 
(for the spatially homogeneous equilibria) are em-

For this problem we regard Ek as having been elim­
inated, so that Ik satisfies 

alk i4rre
2 

ag J 3 at = 'l-k'v/k + mk2 k· av d v Ik' (63) 

If, as in the Appendix, we now take the time deriva­
tive of (61), use (62) to eliminate time derivatives, 
demand that the resultant quadratic form in f 
vanish for arbitrary I, and hence set equal to zero 
the second functional derivative of this resultant 
form with respect to tk and t-k' we obtain the follow­
ing equation for the determination of A k : 

(k.v - k.v)Ak(v, v) = Rk(v) - Rk(v), 

where 

(64) 

(65) 

(Ak is not to be confused with the vector potential 
A introduced earlier.) [From here on we absorb the 
factor in front of the integral (65) into g and we 
drop the subscript k.J The equation for A may be 
solved. From (64) 

A(v, v) = [R(v) - R(v)]/[k.v - k.v] 

+ Q(v, v) o(k.v - k.v), (66) 

and thus from (65) 

R(V)[l - P J d3ij .k.!ag/?v) ] 
k·v - k·v 

where 

+ P J d3ij k:(a~;av~R(v) = Y(v) , 
k·v - k·v 

(67) 

Y(v) = I d3
ij k· :~ Q(v, v) o(k·v - k.v), (68) 

and the symbol P denotes principal value of the 
integrals. If we now define B(v) == R(v)k.ag/av, 
Z(v) == Y(v)k.ag/av, and the tilde operation 

S(u) = J d3v B(v) o(u - k.v), etc., (69) 

then multiplying (67) by k.ag/av and performing 
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the tilde operation yields 

SCU{1 - P J du' ~,g~u~J 
+ ag P J du' ~(u') = Z(u). (70) 

au u - u 

The problem is now reduced to the standard in­
homogeneous Hilbert problem.6 Define 

and 

s(z) = J du S(u) 
u-z 

J ag/au p(z) = 1 - du--· 
u-z 

Then (70) reads 

s+(u)p_(u) - s_(u)p+(u) = 27riZ(u), 

where 

- l' J d ' S(u') s'" - un u, = . , 
..... 0+ U - U -,- 'tE 

etc. 

(71) 

(72) 

(73) 

(74) 

We may proceed to the solution at once if the 
analytic properties of p(z) are known! This, on the 
surface, would seem a painful step for us to take, 
because the initial motivation for this whole in­
vestigation was to ultimately obtain stability 
criteria (not specifically in this paper) without 
ultilizing a detailed a priori knowledge of the disper­
sion function, i.e., of the stability of g. Indeed, we 
have obtained all the constants previously discussed 
without this knowledge. 

For the moment we proceed as if the system were 
stable, i.e., p(z) is sectionally regular and nonvanish­
ing, and p(z) -+ 1 as z -+ co. In this case the index 
of the integral equation (73) is zero and the equation 
has a unique solution vanishing at infinity, 

J Z(u) 
S(z) = p(z) du () ()( )' p+ U p_ U U - Z 

(75) 

Then 

R(v) = k[. 2 • _ • p+ck·v). 
p+(k·v) + p_(k·v) p+(k·v) + p-(k·v) 

X J du ag/au.. 
p+(u)p_(u)(u - k·v - u) 

- p-ck·v) J du ag/au. J. ) 
p+ + p_ p+(u)p_(u)(u - k.v + iE) (77 

We now examine the integrals occurring in (77), 
for instance, 

(78) 

or 

X [C-~U) - 1) - C+~U) - 1)]. (79) 

The addition and subtraction of unity has made 
each of the terms in the bracket of (70) vanishing 
(like 1/ Z2) as z -+ co. For the first parentheses we 
now close the contour in the lower half-plane to 
give zero, while for the second parentheses we close 
in the upper half-plane to obtain 

I", = 1/ p",(k.v) - 1, (80) 

and thus 

(81) 

Likewise, if Y2 (v) = k·v then R2(v) = k·v. [These 
solutions are trivially verified by inspection of (67).] 
These two expressions for Y(v) could emanate, for 
example, either from 

Ql(V, v) = k k/ o(v~ - v~), (82) 
·ag av 

and 

(83) 

or from 
This gives at once, from (67), (71), and (72), 

R(v) = • 2Y(v) • 
p+(k·v) + p-(k·v) 

SAt.v) + s-ck·v) 
- p+ck·v) + p-ck·v)· 

Qf(v, v) = k / J dV k· :: o(k·v - k.v'), 

(76) and 

(84) 

We now demonstrate a multitude of constants. 
Let us assume Y1(v) = it, then Z(u) = kag/au. 

6 N. T. Muskhelishvili, Singular Integral Equations (P. 
NoordhofJ, Ltd., Groningen, The Netherlands, 1953), p. 86, 
et 8eq. 

. / J 3 "ag' • QHv, v) = k·v d v' k· av' o(k·v - k·v'). (85) 

These Q's and Q"s with their corresponding R's 
(the same R's for both Q and Q'!) give rise to the 
constants C1 and C2 emanating from (53) and (57). 
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More generally, it is readily seen that a Q (and 
similarly for Q') of the form 

{it 'v)" _ 
Q .. = fr.,og/av ~(V.l - V.l) (86) 

gives rise to a R,,(v) which is a polynomial of the 
nth degree in (fr.,v) with coefficients made up of 
moments of g. [Here one must add and subtract 
more and more terms in the large z expansion of 
1/ p(z) as in (79).] 

This homomorphism between Q and Y has not 
been fully explored, i.e., we have not given the 
general solution of Q in terms of Y from (68), but 
this should not be too difficult, 

We choose this paper by asserting that if the 
distribution is unstable [p(z) has zeros, as a matter 
of fact in pairs since from (72) both z and z* are 
roots] then the integral equation is of positive even 
index, Now it turns out that the constants (86) 
persist, but in addition there are new constants 
associated with the now nontrivial solutions of the 
homogeneous equation corresponding to (73). This 
is not surprising because we now have some discrete 
unstable Van Kampen-Case7 modes in addition to 
the continuum modes. We do not elaborate further 
here, 
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APPENDIX 

We give here an alternative derivation of these 
constants, in one sense more straightforward, but 
in another sense more limited in that it is only 
appropriate, without severe generalization, to the 
case where the equilibrium is independent of posi­
tion. That is, we shall take advantage of the know­
ledge that if the x variable is Fourier-transformed 
then different k modes do not couple, We begin 
by demanding that the rather general quadratic form 

Q = J d3k{J d3v[!ak(v)ft(v, t)!_k(V, t) 

+ ~k(v)'Bk(t)!-~ + £k(v),Ek(t)!_i] 

+ !Ek,J.,k,E_k + Ek'!'k,B_k + !Bk'Vk,B_k} (AI) 

be a constant of the motion, with the scalar a, the 
vectors ~ and £, and the dyadics A, !" v to be de­
termined, Without loss of generality we may assume 

ak(v) = a_key), i_k = J.,k, V-i = Vi, (A2) 
---

7 See K. M. Case, Ann. Phys. 7, 349 (1959). 

and 

fr.'~i = 0, !'i,k = 0, J'k,k = k'J'k = 0, (A3) 

The symbol"" here means transpose, 
Now upon taking the time derivative of (AI), 

demanding that it vanish, and utilizing the equa-
tions of motion, there results . 

° = J d3k{f dSv[ -(aifi + ~.'Bi + £A:,EA:) 

X [-tk,vf. + (E-i + v xB_k), og/av] 

+ ( -tk xEi ',8k + tk xBk'Ek 

+ tk xBi';\i,E_k - J dV v't.{v'),;\.,E_k 

- tk xE., vk'B_. + tk XB'!'k,B_ 1o 

- J dV v'f(v'),!'.,B_. + t'Ek'!'Jo,k XEk}, (A4) 

Since this must be true for all fA:. E., B., after 
eliminating k,E. and k,B. by 

(A5) 

and 

(A6) 

we set all the second functional derivatives with 
respect to fk' k xEk, and k XBk equal to zero to 
obtain the following set of equations for the un­
determined coefficients: 

(A7) 

I (Og). k 
k2 a~ x v x av + ak - Ak' e 

k i + V'!'-k x e + e k'vk x ~k 

i J 3 k og k - k4 dv 'ov X~k 

+ ;4 J d3vkX(VX::~'Lk = 0, (A8) 
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I Bg. k 
-k2 a~ x Bv - ~(,Ji + k2'V-" 

k k + v'l_" X k2 + ~'k·v e x E" 

i f 3 Bg k - k' d V k· av X E" 

;2kXVi + ;2V-"Xk + ;,j d3
VkX(VX::) 

X k X «(,Jk + (,J-,,) = 0, (AlO) 

i - i I f 3 k Bg 
k2 V" xk + e k XV-k + k4 d V X av 

X k X (E" + E-k) = 0, (All) 

iiI f 3 k Bg k k2 k xl_I: - e "-10 xk - k' d V X av X ~k 

+ ;4 f d3v k X E_"k X (V X ::) = O. (AI2) 

Here a" == Cl!k(V), etc. Actually this rather formidable 
looking set of equations is not difficult to solve. 
Upon dotting (AS)-(AI2) with k and using (A2) 
and (A3), we obtain 

k· Ek = -i(kk/k2) : l", (AI3a) 
hence 

k'(E" + E_,,) = 0, 

k·v,,·k = k'Vk xk = k xVk·k = k·l ... xk 

= kxl,,·k = k·" ... xk = kx",,·k = O. 

(AI3b) 

(AI3c) 

If we set v = 0 in (A7) we find, with C I: == a"k· Bg/ Bv, 
that C" is a linear form in V, 

C" = C~ + Ck·v. (AI4) 

If now (A9) is inserted into (AS) there results 

Ck[v - (kk/k2)·v] + i Eu[k
3 

- (k'vY] + v·v-" xk 

+ k,v·l_,,· [I -~ ] + ;2 k·v f d3
v k· :: EU 

= i2 f d3
v k· :! [~~ k X (:! Xk) - ~k'VEu 1 (AI5) 

Here EU = E,,· [I - kk/k2
]. The integral on the rhs 

of (AI5) is zero, which is seen by taking V first 
in the direction of k and then oppositely oriented. 
Next, if v is taken zero we conclude 

E~.L = O. (AI6) 

Thus, taking v o in (A7) and using (AI3a) 

results in 

Ck = ~ - .. iv· E~lo = A~ + ;4 kk : l,,(k·v). (AI7) 

If (AI7) is now reinserted into (A7) there results 

-V'£-u - V· Eu = o. (AIS) 

If (AIS) is multiplied v,),(/v/), where,), is an arbitrary 
function, and integrated over v we find 

(AI9) 

a linear function of Vol' But D" must be zero as 
seen by inserting (AI9) into (AI5) because there 
is no term to cancel the cubic term, since (AI5) is 
now a polynomial in v. Setting the linear and 
quadratic terms in the resultant (AI5) separately 
to zero gives 

I (kk.V) [kkJ k' kk : lk v - 7 + v·l_,,· 1 - k2 = 0, 

or 

and 
V ... = - (C~/k2)I xk. 

The remainder of the coefficients are now trivially 
found in terms of C~ and kk : lde and we have 
(now in Gaussian units) 

Ql = f d
3
k Bl(k).k{f d3v[2k'B~/BV (mfJ_1: 

ie Bg + ck2 (f"k xB_k - f-~ xBk)· Bv 

+ ~:k4 ::'(k xB"k xB_k)· ::) ] 

+ 4'11"~e [B-"'(Ek xk) + Bk'(E-I:Xk)]} (A2I) 

and 

Q2 = f d
3
k B2(k){f d3v[2k~~iav (mM-1: 
ie ag + ce (f~ X B_1: - f-"k xBk)· av 

I ag ag) + mc2k4 av·(k xB~ xB_k)· av 

+ :"2 v·(kxBkf_k - kXB_kfk)] 

- (I/S'II")(/Ek/ 2 + (I - Z:) /Bk/2)}. (A22) 

Here K2 = w:/c2 and Bl and B2 are arbitrary func­
tions of k. Notice that only two constants are 
found, and these are just those previously stated 
in (35) and (36), as found upon inversion. 
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Mathematical Methods for Evaluating Three-Body 
Interactions Between Closed-Shell A toms or Ions* 
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The mathematical methods involved in the evaluation of three-body interactions between rare­
gas atoms or alkali-halide ions with Gaussian type electron wavefunctions are outlined in first and 
second orders of pertur~ation theory. Th~se methods ar~ of. general applicability for the analysis 
of m~ny:-cen~r coulom.bIC and ~xchange Integrals occurrIng In problems of atomic and solid-state 
phySICS In whIch GaUSSIan functIOns can be used as a basis. 

1. INTRODUCTION 

FUNCTIONS of the Gaussian-type exp (_ar2
) 

have recently found increased interest as a basis 
for the evaluation of two-center and many-center 
integrals in atomic physics and solid-state theory. 
This interest arises from the fact that coulombic 
and exchange integrals with electron wavefunctions 
of Gaussian type are much less difficult to calculate 
than those using Slater-type orbitals, for example, 
as was first noted by Boysl and McWeeny.2 For a 
detailed account of this type of applications we refer 
to a recent treatise by Shavite and an analysis by 
Krauss, 4 where many additional references can be 
found. 

In this paper we will outline the mathematical 
methods used in a somewhat different application 
of Gaussian functions, namely in the analysis of 
stability of rare-gas crystals and alkali-halide solids 
as given recently by Jansen and collaborators.5

-
s 

It can be shown that in the stability analysis the 
electron wavefunctions of the rare-gas atoms and 
those of the alkali-halide ions may be replaced by 
those characterizing the charge distribution of effec­
tive electrons, one such electron per atom or ion. 
This charge distribution is chosen to be of Gaussian 
form 

per) = (!3/nl)3 exp (-!32r2), 

where r is the distance from the effective electron 
* Part of this research has been made possible through the 

support and sponsorship of the U. S. Department of Army, 
through its European Research Office. 

1 S. F. Boys, Proc. Roy. Soc. (London) A200, 542 (1950). 
I R. McWeeny, Nature 166, 21 (1950). 
a 1. Shavitt, Methods in Computational Physics (Academic 

Press Inc., New York, 1963), Vol. 2, p. 1. 
4 M. Krauss, J. Res. Nat!. Bur. Std. B68, 35 (1964). 
5 L. Jansen, Phys. Rev. 125, 1798 (1962); Phys. Letters 4, 

91 (1963). 
a L. Jansen and S. Zimering, Phys. Letters 4, 95 (1963). 
7 E. Lombardi and L. Jansen, Phys. Rev. Letters 12, 11 

(1964); Phys. Rev. 136, AlO11 (1964). 
8 L. Jansen, Phys. Rev. 135, A 1292 (1964). 

to its nucleus, and where (j is a characteristic pa­
rameter, different for different atoms or ions. 

Crystal stability is then analyzed in terms of 
three-body interactions between atoms or ions which , 
are of exchange type; these interactions are evaluated 
in first and second orders of perturbation theory, 
where the unperturbed ground-state wavefunction , 
cp(r), of an atom or ion is taken as the positive 
square root of the charge distribution per). The 
problem thus reduces to the evaluation of three­
body exchange interactions for different triplets of 
atoms or ions in the crystals with unperturbed wave­
functions which are of the Gaussian form. 

In the following sections we analyze the first- and 
second-order perturbation calculations for three­
body interactions between the atoms or the ions , 
first for a general triplet (abc) of atoms or ions. 
Detailed results will be given for specific triangles 
of rare-gas atoms occurring in the face-centered 
cubic and hexagonal close-packed configurations in 
their solid states. In this sense the present paper is 
complementary to Refs. 5-8. The methods outlined 
are, however, of general applicability for the evalua­
tion of many-center integrals with Gaussian func­
tions in atomic physics and solid-state theory. 

2. DEVELOPMENT OF RELATIVE FIRST- AND 
SECOND-ORDER THREE-BODY INTERACTION 
ENERGIES AS A LINEAR COMBINATION OF A 

PRODUCT OF OVERLAP INTEGRALS AND 
SOME BASIC FUNCTIONS 

A. Notation 

We will denote by EI and E 2 , respectively, the 
total first- and second-order interaction energies for 
a triplet of atoms (abc); by EiO) and E~O) the respec­
tive sums of the first- and second-order interactions 
between the isolated pairs (ab), (ac), and (be). 

We will evaluate the relative first- and second­
order three-body interaction energies defined re-, , 

336 
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spectively, as 

!illl/E~O) == (EI - E~O»/E~O) I (1) 

and 

(2) 

B. First-Order Three-Body Energy for Triplets 
of Identical Atoms 

We introduce the following notations: 
lPG, IPb and IPc are the ground-state wavefunctions 

for atoms a, band c, respectively (we have 
IPG(I) = (,8/ni )!e-lI•r '.,/2, etc.); 

H~b is the electrostatic interaction (perturbation 
Hamiltonian) between atoms a and b; 

.6.Gb = f IPGlPb dT is the overlap integral between 
a and b; 

'11 is the zero-order total wavefunction (Slater 
determinant) , 

\Jf = [31(1 - .6.:bC) r i det IlPa(I)lPb(2)lPc(3») , (4) 

and 

'I10 (Gb) = [21(1 - .6.!b)r! det {lPa(I)lPb(2»), (5) 

the zero wavefunction for the pair (ab). We have 

EI = (H~bc) = (H~b> + (H~c> + (H~c>, (6) 

where 

(7) 

and 

EiO) = (H~bc>O = (H~b>O + (H~c>o + (H,c>o, (8) 

<H~b>O = 11 'I1~(Gb)H~b'l10(ab) dTl dT2' (9) 

Similar expressions hold for the pairs (ac) and (be). 

(H~b) and (H~b)O in Terms of Auxiliary Functions 
AI, A 2, A a, and A4 

By substituting (4) in (7), we obtain 36 volume 
integrals, which can be expressed in terms of the 
four auxiliary functions AI, A 2, Aa and A 4, defined 
as follows: 

(:JAl«(:JRab) == 11 1P:(1)IP:(2)H~b dTl dT2, (10) 

tJ.6.:bA 2((:JRab) 

== 11 lPa(I)lPa(2)lPb(I)lPb(2)H~b dTl dT2, (11) 

tJ.6.~eAa(tJRab' (3RG(be» 

== 11 1 1P!(I)lPb(2)lPb(3)lPe(2)lPe(3)H~b dTI dT2 dTa, (12) 

and 

== 11 1 lPa(I)lPa(2)lPb(2)lPb(3)lPe(I)lPc(3)H~b dTI dT2 dTa. 

(13) 

In the above notation, Ra(be) denotes the distance 
between atom a and the middle of Rbe, whereas 
R(ab)(bc) stands for the distance between the middle 
of RGb and the middle of R bc• 

The final first-order expression then becomes 

(~;;) (1 - .6.!be) = Al«(:JRab) - .6.!bA2«(:JRGb) 

- .6.!eA a «(:JRab , (:JRb (ae» - .6.:cAa«(:JRab' (:JRa(be) 

+ .6.ab.6.ae.6.bc [A 4 «(:JRab , (:JRa(be) , (:JR (ab) (be» 

+ A 4 «(:JRab , (:JRb (ae), (:JR (ab)(be»]' (14) 

As a special case, we obtain for the pair-energy 
<H~b)O 

(H~b>O (1 _ .6.2 ) = I'm {(H:b) (1 _ A2 )} 

(:Je2 ab 1 (:J 2 '-labe 
R.c-+OO e 

(15) 

Similar expressions hold for (H~e)' (H~e)o and (HU, 
(HUo. 

Auxiliary functions AI, A 2, A a, and A4 in Terms 
of the Basic Function L(x) = erf x/x 

By substituting the explicit expression of H~b into 
(10)-(13) [for example H~b = l/Rab - l/rb2 -
I/ral + l/r12 in (11)], it is easily found that the 
auxiliary functions A 1 to A 4 can be expressed in 
terms of the basic integral 

L(x) == erf x/x 

as follows: 

AI(x) = I/x - 2L(x) + 2-1L(2-!x), 

A 2(x) = I/x - 2L(x/2) + (2/IT)!, (16) 

Aa(xj, x2 ) = I/xi - L(xl) - L(x2) + 2!L(2i x2), 

and 

AlxI' x2 , xa) = I/xl - L(xl/2) 

- L(x2) + 2i L(2 ixa). 
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The final equation for (H~b) can then be written as 

<~::) (1 - A:be) = (1 - A!be)/{3Rab 

and 

- 2{1 - (t)(A!e + A:e)}L({3Rab) 

+ 2Aab {A.b - A.eAbe} L({3Rab/2) 

+ Aae {Aae - AabAbe} L({3Rb (ae» 

+ Abe {Abe - A.bAae} L({3Ra(bc» 

+ 2-1 {L(2-1{3Rab) - n-1 A!b), 

(~:)o (1 - A!b) = (1 - A!b)/{3Rab - 2L({3Rab) 

(17) 

+ 2A!bL({3Rab/2) + 2-1L(2-1{3Rab) - (2/IT)I A!b' (18) 

C. First-Order Calculation for Different Atoms 

We note that the expressions for the first-order 
three-body interactions given above can readily be 
extended to the case of atoms (or ions) of different 
size, such as occur for mixed molecular crystals and 
for ionic solids. Let a and b denote two different 
atoms, characterized by the Gaussian parameters 
{3' and {J, respectively. The Gaussian wavefunctions 
for the two atoms are 

!Pa(l) = ({3' /ni) t exp ( - {J,2r!1/2) , 

and 

!Pb(2) = ({3/nl). exp (_{32r:2/2). 

Consequently, the integrals occurring in the evalua­
tion of (H~b) are slightly modified. 

We introduce a new parameter 'Y, defined by 

'Y = ({3' / fJ)2 

and use the identity 

(a/ni )8 ff exp [-a2(r!1 + r!2)]/r12 dTl dT2 

= 2-laL(0) = (2/IT) ta, 

and 

kt(a/nl)6 ff exp [-a2(kr!l + r:2)]/r12 dTl dT2 

= erf [(k/k + l)taRab ]/Rab 

= a(k/k + l)iL[(k/k + 1)laRab ], 

(22) 

(23) 

where the parameters a and k are given functions 
of {3 and 'Y. 

The first three types of integrals occurred already 
in the first-order calculations for identical atoms 
('Y = 1); consequently, only (23) is a new type 
of integral. The formula (23) is obtained by using 
the three following identities: 

fl exp [_a2(a2 + b2 
- 2abt)] t 

= {exp [-a 2(a - W] - exp [-a2(a + b)2])/2a2ab, 
(24) 

= nt erf a/2a = niL(a)/2, (25) 

f' {exp [-(au - W] - exp [-(au + W]) erf u du 

(26) 

As is seen from Eqs. (20)-(23), in the case of 
'Y ~ 1, also, all first-order integrals can be expressed 
in terms of erf x functions. 

D. Second-Order Interaction Energy 

For the second-order energy we have to evaluate 

-rr!1 + r:1 = h/C'Y + 1)]R!b + ('Y + l)r~d)1, 
where the point (d) is defined by 

(19) E2 = L: (H~bc)O.(H~bc).o/(Eo - E.) 
... 0 

(27) 
'Y = R(d)b/R(d)a' 

Using (19), all the integrals become of the follow­
ing four types: 

where EaT is defined by the averaging procedure, 
and where K numbers the excited states of the 
system (energy E.). On the other hand, 

(ajITl)3 I exp (-a2r!1)/rb1 dT1 

= erf (aRab)/Rab = aL(aRab), 

(a/ni )6 If exp [-a2(r!1 + r;2)]/r12 dT1 dT2 

= erf (2-laRab)/R.b = 2-iaL(2-laRab), 

E~O) = - E~ .. {(H~;)o - (H~b)~ + [(ae), (bo)]) ; (28) 

(20) [Cae), (be)] signify that the corresponding expressions 
for the pairs (ae) and (be) must be added. It should 
be noted that the quantities Eav in (27) and (28) 
are not precisely the same. Their difference can, 

(21) however, be ignored for our purpose. 
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Since (H~b.) and (H~b.)O are already known from 
the first-order interactions, the only unknown 
quantity is (H~:.), defined by 

(H~:.) == III '1!*H~:.'1! dT1 dT2 dTa. (29) 

Development of (H~:.) as a Linear Combination of a 
Product of Overlap Integrals and the Auxiliary 

Functions (i to X 

For the evaluation of (H~:.) we substitute the 
value of '1! = '1!* given by (4) into (29) and de­
compose in each term H~:. into squares and double 
products, 

Thus we obtain 126 volume integrals, all of them 
ofthe eight following types (except for permutations): 

(3!(i({3RGb) == I I IPG(l)lPb(2)H~:IPG(l)lPb(2) dTI dT2, (30) 

(3~I1!bffi({3RGb) 

== II lPa{l)lPb(2)H~:lPa(2)lPb(1) dTl dT2' 
(31) 

(32) 

== II I lPa(1)lPb(2)1P.(3)H~bH~clPaC1)lPb(2)1P0(3) dTl dT2 dTa, 

(33) 

== III IPG(1)lPb(2)lPc(3)H~!lPa(2)lPb(l)lPc(3) dTl dT2 dTa, 

(34) 

== I I I lPa(l)lPb(2)lPc(3)H~cH'clPaC2)lPb(1)lPc(3) dTI dT2 dTa, 

(35) 

== III lPa(1)lPb(2)1P0(3)H~bH~clPaC2)lPb(1)lPc(3) dTI dT2 dTa, 

(36) 

== III IPG{l)lPb(2)cpc(3)H~:CPa(2)lPb(3)cpo(1) dTI dT2 dTa, 

and 

(37) 

== II I cp.(1)lPb(2)CPc(3)H~cH'ccp.(2)cpb(3)CPc(1) dTl dT2 dTa. 

In (30)-(37) we use the same notation as in 

(10)-(13). We then obtain for (H~:c) the following 
expression: 

(1 - ~:::(H~:c) = {a({3Rab) - l1!bffi({3Rab) 

+ 2e({3R.b, (3R.c, 1:,bao) 

- 211!be({3R.c, {3Rbc , (3Ro Cab» + [(ae) , (be)]} 

+ {-I1!b'£>(j3Rao , (3R cCab ) , 1:,ao(be» 

- 211!bIT'({3Rab , (3Rao , (3RoCab» 

+ 2I1ab l1ac l1bc9({3Rab' (3RaCbc ), (3R Cab ) Cbo» 

+ 2I1ab l1ac l1boX({3Rab' {3Rao , (3Rc Cab» 

+ leba), (ae), (oa), (be), (eb)]} , 

and for (H!b)O, 

(38) 

(H~:)o/{32e4 = {a({3Rab) - l1!bffi({3Rab)}/(l- l1:b).:(39) 

In (38) the notation [Cae), (bc)] has the same 
meaning as in (28). It is to be noted that the total 
number of permutations for the last four terms in 
(38) is six, compared with three for the first four 
terms of this equation, since for the last terms 
permuting a and b, or a and c, or band c is geo­
metrically different for the arguments of the func­
tions '£>, IT', 9, and X. 

From (27), (28), (38), and (39) we note that, 
to obtain the final result for I1E2 / E~O), it is sufficient 
to evaluate the eight auxiliary functions (i to X for 
the corresponding values of the distances {3RGb , 

{3RGo, etc. 

The Auxiliary Functions a-x as Linear 
Combinations of the Basic Integrals K':'S 

We will now express the auxiliary functions (i to 
X in terms of nine basic integrals K to S. To do so, 
we observe that all auxiliary functions contain 
volume integrals of the following forms: 

II = {3arrl I exp [-({32/2)(r!l + r:l)] dTl 

= exp (-~R!b/4) = l1ab' 

12 = {33n- t I exp (-~r!l)/rbl dT!, 

(40) 

(41) 

Ia = {3sn-a II exp [-{32(r!l + r:2)]fr12 dTl dT3, (42) 

14 = {36n -a II exp [-{32(r!l + r:2)]fr~2 dT! dT2, (43) 

15 = {33n-1 I exp ( - (32r!!) /r:! dT!, (44) 
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16 = p6rr-a II exp [-p2(r!1 + r!2)]/ra2r12 dTl dT2' 

(45) 

17 = parr- J I exp (-p2r!1)/rblr el dTl' (46) 

Is = p6rr-a II exp [-p2(r!1 +r!2)]/relr12dTl dT2, 

(47) 

19 = p~-9/2 III exp [-ff\r!l + r:2 + r:a)l!r12r la 

x dTl dT2 dTa, (48) 

110 = p6rr-a II exp [-p2(r!t + r!2)l!relrI2 dTl dT2, 

(49) 

and 

III = p9rr-9/2 III exp [_p2(r!, + r~2 + r~3)]/r12rla 

X dT! dT2 dT3' (50) 

where 110 and III are special cases of Is and 19, 

respectively. 
Upon inspection of the volume integrals II - Ill, 

it appears possible, by using (24), (25), and the 
following identities: 

[ (a2 + b2 
_ 2ab~Tl dt = J2/a, b < a; 

-1 bib, a < b 

(58) 

N(x) == (l/x) {' exp [_u2 - (u - X)2] 

- exp [_u2 - (u + X)2] erf iu du, (59) 

O(u, v, E» == i'" [II iII x2 exp (_X2) 

X (u 2 + X2 - 2ux sin a sin 'Yr! (60) 

X [v2 + x2 
- 2vx sin a sin ('Y + E»rt sin ada d'Y dx, 

P(u, v, E» == i'" [II iII x 2 exp (_x2
) 

X (v 2 + x2 - 2vx sin a sin 'Yf' 

X (u2 + x 2 
- 2ux sin a sin C'Y + E»r' erf [(v2 + x2 

- 2vx sin a sin 'Yft] sin a da d'Y dx, (61) 

Q(u, v, E» == i'" [II iII x2 exp (_x2
) 

and 

X (u 2 + x 2 - 2ux sin a sin 'Y)-t 

X [v 2 + x 2 - 2vx sin a sin (a + E»r t 

X erf (u 2 + x 2 
- 2ux sin a sin 'Y)l 

X erf [v 2 + x 2 - 2vx sin a sin (or + E»]! 

X sin ada d'Y dx, (62) 

i oo fl (d2 + u2 - 2dut)-lU2 exp (_u2) dt du 

= rr'K(d)/2; 

{ exp (_u2) erf u du = (n! /4)d2L2(d); 

(52) Sex) == Q(x, x, 0°) = - {exp [-(u - X)2] rr lZ 
X a 

(53) 

L" {exp [-(u - d)2] - exp [-(u + d)2]) erfudu 

= II! erf (2- td); (54) 

i'" {exp [-(u - d)2] + exp [-(u + dn} erf u du 

= (rrt /2)[1 + (erf 2-id)2]. (55) 

to express these in terms of the nine basic integrals 
K to S, defined as 

2 -z' lZ t' dt K(x) == -e e, 
x 0 

(56) 

2 lZ -t' erf x L(x) == -! e dt = -- , xn 0 x 
(57) 

(64) 

It is seen that the integrals 0 and P are special 
cases of the general integral Q, namely, those cases 
in which one (or both) of the error functions occur­
ring in the integrand of Q are replaced by l. 

The relations between the volume integrals 12-Ill 
and the basic integrals K to S are as follows: 

12 = PL({3Rab), 

13 = (32-1 L(2-t{3Rab), [see (23)] 

I. = (32N({3Rab)' 

15 = (32 K({3Rab) ' 

16 = (32[!K({3Rab) + M({3Rab)]. 

17 = n-!{320({3Rab , (3R ae , 1:.bac), 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 
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18 = rr-I{32P(j3Rac, (3Rab , 1:. bac), 

19 = rr-!{32Q({3Rab , (3Rac , 1:. bac) , 

(71) + P(X2' Xa; 1:.X2' xa)]; (81) 

(72) X(Xl' X2, Xa, (X4' Xs, Xij» 

110 = rr-!{32P(j3Rac, 0, 0°) = '(32R(j3Rac), 

and 

(73) = [L(xd2) - l/x2][L(xl /2) + L(xij) 

As the final step, we express the auxiliary func­
tions a to X via the volume integrals lc111 in 
terms of the basic integrals K to S. The results are 

a(x) = l/x2 + 2V(x) + (2i /x)L(2- ix) 

+ N(x) - 4L(x)/x - 4M(x); (75) 

<B(x) = 1 + l/x2 + 2/x(2/rrl) + 2K(x/2) 

+ 2L2(x/2) - 4/xL(x/2) - 4R(x/2); 

e(Xl' X2, a) 

= [1/xl - L(xI)][I/xa + 2-iL(2-'x2) - 2L(X2)] 

+ [1/x2 - L(x2)][2-iL(2-1xI) - L(xI)] 

+ rr-![O(xlI Xa, a) - P(XI' X2, a) - P(X2' XI, a) 

(76) 

+ Q(xl , X2, a)], where a = 1:.Xl' X2; (77) 

~(x\, X2, a) = l/x~ + K(xl) 

+ 2L(xl)L(X2) + (21/x))L(2-1x2) 

+ N(X2) - 2/Xl[L(xl) + L(X2)] - 2M(X2) 

- 2/rr1p(Xl' X2, a), where a = 1:.Xl' X2; (78) 

S(XI, Xa, xa) = l/xlx2 

- 2-i L(xa)L(2-'xa) + L(Xl) [L(xa) - l/x2] 

+ L(X2)[L(xa) - l/xI] + [L(xa) - (Xl + X2)/XIX2 ] 

X [L(xa) - 2-iL(2-1Xa)] 

+ rr-![O(Xl' X2, 1:.Xl' x2) - P(XIX2, 1:.Xl' xa) 

5(x\, X2, xa) 

[1/x2 - L(x2)][I/xl - 2L(xr/2) + (2/rr)l] 

+ [L(xr/2) - l/xI][L(xa) - 2- iL(2-'xa)] 

- R(xa) + rr-![0(xr/2, Xa, 1:.xl/2, xa) 

(79) 

- P(xl/2, Xa; 1:.xr/2, xa) + Q(xa, 0, 0°)]; (80) 

g(Xl' X2, xa) = l/x~ + K(xl /2) + K(X2) 

+ N(xa) + 2L(xr/2)[L(X2) - l/x l ] 

+ 2/x\[2-1L(2-1Xa) - L(x2)] 

- (2/II)![P(xI/2, Xa; 1:.xl /2, xa) 

- 2-iL(2-1xs) - l/xl ] + [L(xij) - l/xl ][L(xa) 

- P(xl/2, X4; 1:.xl /2, X4) - P(xa, Xs; 1:.xa, xs) 

+ Q(X4, X5; 1:.X4' xs)]. (82) 

The variables XII X2, Xa, X., X5, Xij have the following 
meaning: 

Xa 

{3Rac (3Rbc (3Rb(ac) (3R(ac)(bc) (3R(ab)(ac) (3Rc(ab) 

For the remaining five X functions, the variables 
are found by permutations. 

3. EVALUATION OF THE BASIC INTEGRALS 

A. General 

For small values of the parameters X, u, and 
v( < 2, 5), the evaluation of the basic integrals is 
accomplished by means of electronic computation. 
For large values of x(x ~ 2, 5), the functions 
K(x), L(x), M(x), N(x), R(x), and Sex) are evaluated 
by means of an asymptotic expansion, which gives 
an accuracy of 10-5 to 10-6 for X = 2, 5, whereas 
for the functions 0, P, and Q, a double-series 
expansion is used. 

We will give here the expansions used, and then 
discuss some aspects of their derivation. The asymp­
totic series expansions are: 

1 -z' N (2 3) " x - L(x) = ;2rrl ~ ~x~n I" + 0(X-
2N

-
2
), (83) 

K( ) = ~ (2n - 3)!! + O( -2N-2) 
X £....J 2n-1 2n X , 

.. -1 X 
(84) 

R(x) - (jjY / X 

(85) 

-x ll /2 

M(x) = !K(x) - rr- i 2i ~ 
X 

X (1 + 12 + 74 + 2~) + 0(e- z
'
/2/xll

), (86) 
X X X 

N(x) = f (2n ~ .. 3)!! + 0(X-2N- 2), (87) 
.. -1 X 
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and 
-s'/2 ( -S'/2) 

Sex) = niK(x) - 2in e x3 + 0 e x6 • (88) 

For Q(u, v, 8) the following double-series expan­
sion is used: 
Q( 8) 2 L: L: (2n - 1) !l(2m - 1) !!(n + m) !! 

u, v, ,....., (n+m) even (2n) !!(2m) !l(n + m + I)!! 

X {n sinn 'Y sin!n (8 + 'Y) d'Y (?:; u2 r (2 2~ v2 r 
where u ;:::: v, 

o = Xo < XI < ... < Xi < Xi+1 < ... < Xl = V - a, 

and a is a small fixed number. 
The series expansions for P and 0 are particular 

cases of (89), in which one, (or both) of the error 
functions are replaced by unity. 

B. Derivation of the Asymptotic Expansions 

As each of the functions K, L, M, N, R, and S 
involves either erf X or erf ix, we give first the 
asymptotic expansions of these two functions, 
namely 

1 - erf X == 1 - 2n-1 is e-" dt 

_ e-X
' N (-I),,-\2n - 3)!! (e-s

• ) 

- ;;r.p t; (2X2)" 1 + 0 X2N+I ' (90) 

and 

erf ix = 2n-1 [ e" dt 

eX' N (2n - 3)!! ( eX' ) 
= ;;r.p t; (2X2)" 1 + 0 X2N+I • (91) 

The last two expansions are easily established 
by applying l'Hospital's rule. By using (90) and (91), 
the asymptotic expansions for K(x), L(x), and R(x) 
follow directly. For the function M(x), we apply 
first l'HospitaI's rule, which gives 

i
s N 

= 0 et'dt - 2(2/n)l !; (-I),,-\2n - 3)!! 

X "/2 (X'/2 ) 
X i ;2n-1 + 0 X:(N+ll ' 

where a is a fixed small number. Then, by repeated 
application of the identity 

1
s e"/2 eS'/2 1s e" /2 

a t2n- 1 dt = x2n + 2n a t2n+1 dt + 0(1), 

for n = 1,2, ... ,N - 1, 

we obtain Eq. (86). For the function N(x), we divide 
the integral in two parts, the first one between the 
limits 0 and a, the second one between a and co; 
these partial integrals are denoted, respectively, by 
N*(x) and N**(x). Since we have 

N*(x) = O(e-(s-a)'/x) , 

it follows that 

N*(x) = N**(x) + O(e-(S-O)'/x), 

where 

N**(x) = 1'" {exp [_u2 
- (x - ul] 

- exp [_u2 
- (x + U)2]) erf iu duo 

We now replace erf iu in N**(x) by its asymptotic 
expansion (91), and obtain 

N 

xN**(x) = n-1 L: 2-(2h-1)(2k - 3)!! 
k-I 

X Nt*(x) + 0(X-2N
-

1
) 

with 

Nt*(x) = 1'" u - (2k-l) {exp [- (u - xf] 

- exp [-(u + X)2]) du, k = 1,2, ... ,N. 

By using for Nt*(x) the identity 

1
0) _(1£-X)2 _(1£+%)2 

e - e ; 
=-----"--- du = n xK(x) 

o u 
(92) 

and the property 

1 d 2 (.-l) 

N~*(x) = [2(v _ I)]!! dx2 (. I) [Nt*(x)]' 

v = 1,2, ... ,n, 

we find Eq. (87). For the function Sex), we consider 
again only the integral between the limits a and 
co, where a is a fixed small number, since we have 

{ {exp [-(u - X)2] - exp [-(u + X)2]} 

X erf2 u/u du = O(xe-S
'). 

Then we use (90), which leads to 

1
tO -(u-z)· -(u+x)-e - e n-1xS(x) = du 

a U 

N 

+ L: I.(x) + 0(e-s'/2/x2N+I), 
_-I 
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where 

I,(x) = (-I)"(2p - 3) !I 
2'-2n' 

X e -e e d 1
'" { -( .. -",)' -( ..... "').\ -.. ' 

2, u, p= 1,2, ... ,N. 
o U 

By using the identity (92), and considering the 
fact that 

N 

L I,(x) = o(I/x) , .-1 
we obtain 

lim {S(x)/K(x)} = nt. 

To determine the second term of the asymptotic 
expansion of Sex), we note first that 

Then we write 

_2- l n- i exp (JN2)II(x) = f' {exp [-2(u - X/2)2] 

- exp [-2(u + X/2)2]} /u duo 

and differentiate the last integral with respect to x, 
which yields 

Il(x) = _25/2 exp (_!X2)/X2 + O[exp (-ix 2)/X4
]. 

Consecutive terms are obtained by the same 
procedure. 

C. Derivation of the Double-Series Development 
Used for the Functions O(u, v, 0), P(u, v, 0) 

and Q(u, v, 0) 

We sketch the derivation for the function O(v, v, 8) 
only, since the method is similar for the general 
case u r6 v, as well as for the functions P and Q. 

It is sufficient to consider only the integral between 
the limits x = 0 and x = v - a, where a is a fixed 
small number, since we note that 

O(v, v, 8) ~ 0 1 + 12nve- I,-a)'(1 + iv2a) , 

with 

-l,-a 121I 0 1 -
o 0 

r (x2 + v2 
- 2xv sin a sin 'Y)' 

o 

X (x 2 + v2 
- 2xv sin a sin (oy + 8»i 

X x 2e-"" sin a da d'Y dx. 

By using the binomial series 

(VI + x 2 
- 2vx sin a sin 'Y)-l 

(93) 

(94) 

= (x2 + v2)-i f (2n - ~) II ( 22vx 2)" 
.. -0 (2n) .! x + v 

we obtain, changing the orders of integration and 
summation, 

where 

and 

0 1 = L L C ... ,,.Jn+m, (95) 
(n+m) even 

c = 2(2n - 1)!!(2m - l)!!(n + m)!! 
.. ·..(2n)!!(2m)!!(n + m + I)!! 

n+ m = 0,2,4,6, .... 

The coefficients C ...... can be evaluated on a desk 
calculator; J .. + ... is determined by electronic computa­
tion. In (95), it appears that sufficient accuracy is 
obtained in terminating the double series at values 
of m and n equal to about 8. This can be seen 
fr?m considering the remainder Rs of the series (95), 
wIth n or m > S, which satisfies the inequality 

< S!! [(2S + 1) !!J3 
Rs - ill (S + I)!! (2S + I)!! 

X J 2 (s+1) 

[
1 _ 2v(v + a) J2' 

v2 + (v _ a)2 

D. Particular Cases for the Basic Integrals 

For x = 0 we have 

K(O) = 2, L(O) = 2n- i , M(O) = 0, 

N(O) = 1, R(O) = 1, and S(O) = 2ni /3. 

These values are obtained directly by using 
l'Hospital's rule. Other particular cases are 

O(v, v, 180°) = nV'v-1 [I - vL(v)], 

O(v, v, 0°) = 2[nv-\I - e-") + nl(I - vL(v)J, 

P(v, 0, 0°) = n!R(v), 

P(v, v, 0°) = n![!K(v) + M(v)], 

and 

Q(v, v, 0°) = S(v). 

The last identities are obtained with the help of 
Eqs. (24), (25), and (51)-(55). 

4. NUMERICAL RESULTS 

A. General 

In this section we present tables containing numer­
ical results for the basic integrals K(x), L(x), M(x), 
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TABLE 1. Numerical values for the basic integrals K(Xl) to S(Xl); x = fJRub '= fJRac = 2.5. 

(xi/X)2 K(Xl) L(xl) M(xI) N(xl) R(xl) S(Xl) 

0 2.0 1.128379 0 1.0 1.0 3.712219 
1/24 1.037623 
1/12 1.431003 0.959653 0.081558 0.795128 
1/8 0.892313 
1/6 0.833800 
1/4 0.793322 0.738320 0.138294 0.607405 0.603990 2.404900 
1/3 0.615730 0.664243 0.150726 0.480991 
3/8 0.633351 

11/24 0.580986 
1/2 0.401537 0.558660 0.140018 0.362737 0.448154 
5/8 0.503339 
2/3 0.287157 0.489707 0.284294 0.383076 
3/4 0.249742 0.460864 0.150145 0.271146 0.368128 1.218120 

19/24 0.448817 
7/8 0.427215 

11/12 0.197250 0.417489 0.209192 0.333259 
1 0.178467 0.399837 0.083428 0.199248 0.319080 

9/8 0.377057 
5/4 0.138791 0.357743 0.067490 0.155003 0.285451 
4/3 0.340395 
3/2 0.326594 

19/12 0.107280 0.317885 0.053213 0.116012 
7/4 0.096396 0.302371 0.048177 0.104100 0.241257 0.534454 

2 0.083700 0.282842 
25/12 0.080183 0.277128 0.040082 0.084989 
9/4 0.073976 0.266667 0.037105 0.078038 0.212762 0.411425 
8/3 0.062004 0.244949 

3 0.054888 0.230940 0.027442 0.056856 
11/3 0.044680 

4 0.040854 0.2 0.020427 0.041849 

TABLE II. Numerical values of the basic integrals 0, P, and Q. 

(u/2.5)2 (v /2.5)2 cos e O(u,v,e) P(u, v, e) Q(u,v,e) (u/2.5)' (v/2.5)' cos e O(u, v, e) P(u, v,e) Q(u, v, El) --
0 1/4 1 4.097613 2.874890 3/4 1/4 -31/'/2 1.546731 
0 3/4 1 2.002423 11/12 1/4 (11/12)1/2 1.561488 
0 5/4 1 1.582341 1 0 1 2.512953 
0 7/4 1 1.342051 1 1/12 12-1/2 1.652784 
0 9/4 1 1.184667 1 1/4 1 1.513208 

1/12 1/4 12-112 3.612911 1 1/4 1/2 1.449800 
1/4 1/4 1/2 2.756714 2.317396 1 1/4 -1 1.305177 
1/4 1/4 1/3 2.682352 1 1/3 3-lIZ 1.366500 
1/4 1/4 0 2.590675 2.443580 1 1/2 2-1/2 1.228400 
1/4 1/4 -1/3 2.535872 2.197441 1 3/4 3112/2 1.121595 
1/4 1/4 -1/2 2.500426 2.176713 1 1 1 1.776742 
1/4 1/4 -5/6 2.428994 1 1 1/2 0.920568 0.908411 0.896354 
1/4 1/4 -1 2.404981 2.118723 1 1 -1/2 0.862465 0.854839 0.847225 
1/4 1/2 2-1/2 2.317859 1.942700 1 1 -1 0.832231 0.825495 0.818761 
1/4 1/2 _2-1/2 2.017603 1 5/4 2(5)-1/2 0.849002 
1/4 2/3 (2/3)1/2 2.143085 1.758387 1 19/12 7(57)-1/2 0.755000 
1/4 2/3 -(2/3)1/2 1.857811 1 7/4 5(28)-1/2 0.717906 
1/4 3/4 3112/2 2.087066 1.680937 1 5/12 17/10.31 " 0.657017 
1/4 3/4 0 1.837384 1.800251 1 9/4 1 0.631944 
1/4 3/4 -31/'/2 1.693078 1 3 3112/2 0.537121 0.537106 0.528104 
1/4 11/12 (11/12)1/2 1.864405 1 4 1 0.466147 0.466146 0.458173 
1/4 1 1 1.850083 1.490413 5/4 1/4 2(5)-112 1.331747 
1/4 1 -1 1.614754 5/4 1/2 3(1O)-lIJ 1.119067 
1/4 5/4 5-1/2 1.602570 19/12 1/4 7(57)-112 1.177939 
1/4 5/4 _5-1/2 1.536950 1.530590 19/12 2/3 6(38)-112 0.889531 
1/4 19/12 5(57)-1/' 1.390239 7/4 1/4 5(28)-lI2 1.118648 
1/4 19/12 -5(57)-1/2 1.244082 7/4 3/4 5(28)-1/2 0.804509 
1/4 7/4 2(7)-1/2 1.337278 1.336076 2 5/4 3(10)-1/2 0.589880 
1/4 7/4 -2(7)-112 1.175596 1.174327 25/12 1/4 17/10.31/2 1.022714 
1/4 9/4 -1 1.196663 1.196574 25/12 11/12 17/10.31/2 0.671650 
1/3 1/4 3-1/2 2.480120 9/4 1/4 1 0.983292 
1/2 1/4 2-112 2.099467 1.942670 9/4 1 1 0.619564 
1/2 1/4 _21/2 1.847348 8/3 19/12 6(38)-112 0.451 
1/2 1/2 0 1.710851 3 1 3112 /2 0.537121 0.528118 0.528104 

(2/3)1/2 1/4 (2/3)1/2 1.842978 3 7/4 9(84)-lI2 0.403154 
(2/3)1/2 1/4 -(2/3)1/2 1.513210 11/3 25/12 (99/100)1/2 0.332393 
(2/3)112 1/3 0 1.778815 4 1 1 0.466147 0.458174 0.458173 

3/4 1/4 31/2/2 1.744611 1.680937 4 9/4 1 0.305211 
3/4 1/4 0 1.874103 
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TABLE III (a). Numerical values for the auxiliary 
functions «to :JC Functions «(Xl) and <S(Xl); 

60° 
90° 

109"28' 
120° 
146°27' 
180° 

x = PRob = pRo. = 2.5. 

(Xt/X)! 

1 
2 

8/3 
3 

11/3 
4 

21561 
1973 
647 
420 
191 
142 

38572 
1031 
118 

38 
5 
1 

N(x), R(x), and Sex) for different values of the 
.argument x. These values occur in the expression 
for six equilateral triangles with opening angles 60°, 
90°, 109°28', 120°, 146°27', and 180°, for which 
we have evaluated the relative second-order three­
body interactions. For values of x > 2, 5, the 
asymptotic expansions (83) to (88) were used; for 
smaller values of the variable, the results were 
obtained by means of electronic computation. 

Tables containing numerical values for the remain-

TABLE III (b). Functions e and 5) [see Eqs. (77) and (78)]; x = {JRab = pRo. = 2.5. 

b2 Numerical 
Function e (Xt/X)2 (X2/X)2 b=cosa value X 106 

60° 1 1 1/4 64 
90° 1 2 1/2 6 

4e(Xh X2, a) 
where 

109°28' 1 8/3 2/3 1 

Xl = (JR •• 120° 1 3 3/4 <1 
:1:2 = fJRbc 146°27' 1 11/3 11/12 <1 
a = <r.bca 180° 1 2 1 <1 

60° 1 1 1/4 32 
90° 1 1 0 7 

2e(Xl, :1:2, a) 
where 

109°28' 1 1 1/9 4 

Xl = (3R.b 120° 1 1 1/4 3 
X2 = (JR •• 146°27' 1 1 25/36 <1 
a = <r. cab 180° 1 1 1 <1 

60 0 1 3/4 3/4 3052 
90° 1 5/4 4/5 1607 

26.2·(x)5)(Xl, X2, a) 109°28' 1 
where 

19/12 49/57 938 

Xl = fJR"c 120° 1 7/4 25/28 884 
:1:. = (JR. (.b) 146 0 27' 1 25/12 289/300 791 
a = <r.ac(ab) 180° 1 9/4 1 760 

90° 2 5/4 5/4 1163 
26.2(x)5)(Xl, X2, a) 
where 

109°28' 8/3 19/12 18/19 442 

XI = (3Rb• 120° 3 7/4 3/28 354 
X2 = (JR. (ob) 146"27' 11/3 25/12 33/100 195 
a = <r.bc(ab) 180° 4 9/4 1 150 

60° 1 3/4 3/4 3052 
90° 1 1/2 1/2 300 

26.2({JRb.)5)(xl, X2, a) 109°28' 1 1/3 1/3 86 
where 
Xl = (3Ra• 120° 1 1/4 1/4 56 
X2 = (JR. (be) 146°27' 1 1/12 1/12 12 
a = <r.ca(bc) 180° 1 0 1 7 

TABLE III (c). Functions 8, if, g, and :JC [see Eqs. (79)-(82)]. 

Numerical 
Function e (xt/x)' (X2/X)2 (X3/X)2 value X 106 

60° 1 1 3/4 -624 
90° 1 2 5/4 -360 

46.2(x)8(Xh :1:2, X3) 109"28' 1 8/3 19/12 -340 
where 
Xl = {JR •• 120° 1 3 7/4 -330 
X2 = {JR b• 146°27' 1 11/3 25/12 -324 
X3 = {JR. (ob) 180° 1 4 9/4 -320 
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TABLE III (c) (continued), 

Numerical 
Function e (xt/x)t (X2/Z)' (Xa/X)2 value X 10' 

60° 1 1 3/4 -312 
90° 1 1 1/2 +30 

2A2(pRb.)8(Xl, X" x.) 
where 

109°28' 1 1 1/3 +12 

XI = pR ... 120° 1 1 1/4 +4 
:&2 = pRob 146°27' 1 1 1/12 1 
x, = pRo (b.) 1800 1 1 0 <1 

60° 1 1 3/4 441 
900 1 1 5/4 76 

4A2(Z)fr'(Z], Xt, XI) 109°28' 1 1 19/12 18 
where 
XI = pR ... 120° 1 1 7/4 7 
X2 = pRob 146°27' 1 1 25/12 2 
Xa = pRb( ... ) 180 0 1 1 9/4 -4 

600 1 1 3/4 441 
90" 1 2 5/4 81 

4A2(X )\f(XI, :&2, X,) 109"28' 1 8/3 19/12 24 
where 
Xl = pRob 120° 1 3 7/4 13 
Z2 = pRbc 146°27' 1 11/3 25/12 3 
z, = pRe (ob) 180° 1 4 9/4 2 

600 1 1 3/4 441 
90° 1/2 1 1/2 40 

4A2(pRbe )\f(ZI, ZII :1:.) 109°28' 8/3 1 1/3 13 
where 
ZI = PRb. 120" 3 1 1/4 6 
X2 = pRo. 146°27' 11/3 1 1/12 1 
z, = pR .. (b.) 1800 4 1 0 <1 

60" 1 3/4 1/4 6032 
90° 1 1/2 1/4 2510 

2A2(X )A(PRbe)S(Zl, Z" :1:,) 109°28' 1 1/3 1/4 1140 
where 
:1:1 = pRo. 1200 1 1/4 1/4 712 
X, = PR. (be) 146"27' 1 1/12 1/4 396 
Xa == pR (be )(oe) 180° 1 0 1/4 339 

60° 1 3/4 1/4 6032 
90° 1 5/4 1/2 1228 

2A2(Z)A(PRb.)S(XIJ X2, X,) 109°28' 1 19/12 2/3 409 
where 
ZI = pR ... 120° 1 7/4 3/4 222 
X2 = (JR.(ob) 146°27' 1 25/12 11/12 74 
X3 = pR (., )(ob) 180° 1 9/4 1 41 

60° 1 3/4 1/4 6032 
90° 2 5/4 1/4 1120 

2A2(Z )A(tlRbe)S(XI, X2, x,) 109°28' 8/3 19/12 1/4 354 
where 
Xl = tlRbc 120° 3 7/4 1/4 178 
X2 = pRc(ab) 146°27' 11/3 25/12 1/4 59 
X3 = pR (.b) (be) 180° 4 9/4 1/4 34 

60° 1 1 3/4 1225 
900 1 1 5/4 488 

4A2(X)A(tlRb.)X(XI, X2, X,) 109°28' 1 1 19/12 250 
where 
Xl = (JR •• 120° 1 1 7/4 155 
X2 = pRab 1460 1 1 25/12 73 
X, = pRb( •• ) 180° 1 1 9/4 51 

60° 1 1 3/4 1225 
90° 1 2 5/4 232 

4A2(X )A(pRbc)X(Xl, X2, x,) 109°28' 1 8/3 19/12 -13 
where 
Xl = (JR.e 120° 1 3 7/4 -41 
X2 = {JRbc 146°27' 1 11/3 25/12 -51 
X3 = {JRb (oe) 180° 1 4 9/4 -57 
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TABLE III (c) (continued). 

Function 

4~!(x)~(,sRb.):JC(Xl' XI, x,) 
where 
Xl = ,sRb• 
X. = ,sRa• 
X, = ,sRa(bo) 

Xl = ,sRao 
X2 = ,sRbo 
Xa = ,sRb(ao) 

4~2(X )~(,sRb.):JC(Xl' XI, x,) 
where 
Xl = ,sRb. 
X2 = ,sRao 
Xa = ,sRa (be) 

(9 

60° 
90° 

109°28' 

120° 
146°27' 
180° 

120° 
146°27' 
180° 

60° 
90° 

109°28' 

120° 
146°27' 
180° 

TABLE IV. Final results for relative first- and 
second-order three-body interactions, as 

functions of opening (9 of isoceles 
triangles; ,sRab = ,sRao = 2.5. 

(9 t.EdEl(O) t.E2/E.(O) 

60° -0.2008 -0.1612 
90° -0.0612 -0.0378 

109°28' +0.0187 +0.0197 
120 0 +0.0209 +0.0432 
146°27' +0.0339 +0.0539 
180° +0.0374 +0.0557 

(X1/,,)1 

1 
2 

8/3 

3 
11/3 

4 

1 
1 
1 

1 
2 

8/3 

3 
11/3 

4 

ing three basic integrals O(u, v, E», P(u, v, E», and 
Q(u, v, E» are also given as functions of the three 
variables, again corresponding to the six triangles 
considered. These basic integrals were evaluated by 
electronic computation for u or v < 2, 5 and by 
using the double-series expansions (89) for the 
remaining values of u and v. It was possible to 
avoid excessive machine calculations by making 
use of some theoretical relations between the values 
of 0, P, or Q for different values of u and v; i.e., 

Numerical 
(XI/~)I (XI/,,)2 value X 10' 

1 3/4 1225 
1 1/2 -24 
1 1/3 -65 

1 1/4 -115 
1 1/12 -77 
1 0 -67 

3 7/4 -41 
11/3 25/12 -51 

4 9/4 -57 

1 3/4 1225 
1 1/2 -24 
1 1/3 -65 

1 1/4 -115 
1 1/12 -77 
1 0 -67 

if Q(u" Vi, E» is known for a set of values of u. 
and Vi, then Q(u', v', E» can be determined the­
oretically with a certain given precision. In some 
cases, general asymptotic expansions were used for 
direct evaluation of the auxiliary functions, instead 
of via the basic integrals. 

Numerical values for K(x), L(x), M(x), N(x), R(x) 
and Sex) are given in Table I, those for O(u, v, E»; 
P(u, v, E» and Q(u, v, E» in Table II, and those 
for the auxiliary functions a to 3C in Table III (a-c). 
The values of Table III (a-c) follow directly from 
the relations (75)-(82). Finally, numerical results 
for the relative first- and second-order three-body 
interactions are given for x = {3R = 2,5, which 
corresponds to the case of solid argon (see Table IV). 
These results have been obtained directly by using 
Eqs. (38) and (39). 
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Methods of quantu.m statistics are applied to the general multicomponent system and explicit 
rules for the calculatIOn of thermodynamic quantities and distribution functions in terms of the 
basic particle. interactions are derived. Particular attention is given to the nonrelativistic system of 
charged partIcles, and several inherent difficulties are investigated and treated. Included are the 
renormalization, by the A transformation, of charged-particle energy contributions due to the emis­
sion and reabsorption of photons and the formal sum over all long-range Coulomb effects wherever 
(diagrammatically) they give divergent expressions. The latter sum is shown to result in the familiar 
Debye-Huckel theory in the high-temperature, low-density limit. 

INTRODUCTION 

ALTHOUGH most of the macroscopic systems in 
nature are comprised of more than one kind 

of particle, the quantum-mechanical microscopic 
theory of multicomponent systems has hardly been 
developed at alI.l Part of the reaSOn for this is that 
the important physical consequences of a theory 
are usually exhibited by simple models, so that 
theoretical efforts in the many-body problem have 
been largely concentrated on single-component 
systems. Unfortunately, this particular simplifying 
feature is nO longer present when there are charges 
in the system, and the primary purpose of this paper 
is to present a complete and usable theory for the 
study of charged-particle systems. 

Several other formalisms have been developed 
and applied to a quantum-mechanical system of 
charge particles.2

-
6 However, almost all of these 

studies have been confined to an electron gas in a 
uniform background of positive charge, and have 
been examined only in the limits of high temperature 
and low density (classical), or high density and low 
temperature (ground state). The majority of these 
calculations have considered only the ring diagram, 
or random-phase approximation, although Abe7 and 

* Supported in part by a grant from the National Science 
Foundation. 

t Supported in part by the National Bureau of Standards, 
Boulder Laboratories, Boulder, Colorado. 

:\: Present address: Physics Department, University of 
Wyoming, Laramie, Wyoming. 

1 For a short history of the multicomponent problem when 
charged particles are not involved, and a development which 
is a specIal case of the present formulation, see R. K. Pathria 
and M. P. Kawatra, Phys. Rev. 129, 944 (1963). 

2 E. W. Montroll andJ. C. Ward, Phys. Fluids 1, 55 (1958). 
3 C. Bloch and C. De Dominicis, Nucl. Phys. 7, 459 (1948). 
4 P. Nozieres and D. Pines, Nuovo Cimento 9, 470 (1958). 
6 A. E. Glassgold, W. Heckrotte, and K. M. Watson, 

Phys. Rev. 115, 1374 (1959). 
6 F. Englert and R. Brout, Phys. Rev. 120, 1085 (1960). 
7 R. Abe, Progr. Theoret. Phys. (Kyoto) 22, 213 (1959). 

otherss
.
g 

have made some progress in understanding 
nonring terms in the classical case, and De Witt10 

has considered some of the quantum corrections. 
In order to understand the general ionized gas in 

thermal equilibrium, one must be able to calculate 
thermodynamic quantities beyond these approxi­
mations, and for finite temperature and density. 
Furthermore, Baxterll has recently shown in the 
one-dimensional case that there are indeed differences 
between the thermodynamics of true multicom­
ponent systems and those with uniform background 
of positive charge, so that the need is evident for a 
developable theory of multicomponent systems. 
In principle, the formalisms mentioned above may 
be extended to multicomponent systems and devel­
oped further, but this further development has not 
taken place, despite the intervening length of time, 
and it is not clear with what ease they can be ex­
tended so as to explicitly calculate thermodynamic 
quantities. We must note, however, that DeWitt12 

and others13 have made some probings in this 
direction. 

Our exposition is based on the original work of Lee 
and Yang,a as further developed by Mohling/S

•
16 

and can be considered as a natural extension of that 
work. The success in understanding low-temperature 
Bose and Fermi systems from this point of view 
leads us to believe that the same success can be 
obtained with charged-particle systems, but in the 

8 E. Meeron, Phys. Fluids 1, 139 (1958). 
9 H. L. Friedman, Mol. Phys. 2, 23 (1959). 
10 H. E. DeWitt, J. Math. Phys. 3, 1216 (1962). 
11 R. J. Baxter, Proc. Cambridge Phil. Soc. 59, 779 (1963). 
12 H. E. DeWitt, J. Nucl. Energy, Pt. C: Plasma Phys. 2, 

27 (1\)61). 
13 H. B. Levine, Phys. Fluids 3, 225 (1960). 
14 T. D. Lee and C. N. Yang, Phys. Rev. 113, 1165 (1959); 

116,25 (1959); 117,12,22,897 (1960). 
16 F. Mohling, Phys. Rev. 122, 1043 (1961); hereafter 

referred to as I. 
16 F. MoWing, Phys. Rev. 122, 1062 (1961); hereafter 

referred to as II. 
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final analysis this can only be decided, of course, after 
making suitable applications. Thus, the quantum­
statistical theory which is presented here is actually 
very flexible, in that it can include all possible kinds 
of particles and their interactions, provided only that 
the number of each kind of particle considered is 
very large. The essentials of such a theory are well 
known, and therefore Sec. Ion the Ursell expansion 
of the grand partition function for a multicomponent 
system contains no novel features. 

In order to formulate the detailed rules for ex­
plicitly calculating thermodynamic functions, it is 
useful to study a particular set of interactions. 
Hence, in Sec. II the notation of the Fock represen­
tation is reviewed and applied to the case of non­
relativistic electromagnetic interactions. Some of the 
consequences of electromagnetic interactions are 
pursued in the remainder of the paper along with 
the development of the general theory. 

The most important steps in the development of 
the general theory are contained in Sec. III, where 
the Ursell functions UC:) are expressed in terms of 
the basic interactions of the system. The final result 
of this section is Eq. (41), which provides a dia­
grammatic prescription for the calculation of the 
U;"8) in terms of wiggly-line cluster graphs. 

One of the inherent difficulties associated with 
electromagnetic interactions is the self-energy pro b­
lem due to the emission and reabsorption of photons 
by a single charged particle. In Sec. IV, it is shown 
that one-particle cluster graphs contain this self­
energy problem. Moreover, it is demonstrated that 
the (divergent) self-energy terms are completely 
independent of any thermodynamic parameters 
of the many-body system. It is therefore physically 
acceptable that they be removed by canceling them 
against counterterms in the single-particle energy­
momentum relations. This is formally achieved by 
the As transformation [Eqs. (52)-(65)], under which 
one-particle cluster graphs retain their system­
dependent, nondivergent parts. 

A principle result of this paper is the linked-pair 
expansion of the grand potential (the logarithm of 
the grand partition function). Equations (71) and 
(77) in Sec. V denote this expansion as a sum over 
all linked-pair 0 graphs, whose prescription represents 
a concise formulation of quantum statistics in terms 
of the basic particle interactions. Furthermore, in 
the derivation of this prescription from results in 
the preceding sections most of the tedious com­
binatorial problems of the theory are solved by the 
use of symmetry numbers. The linked-pair expansion 
given here, which includes photon interaction terms, 

is a generalization of the first author's previous 
result for the grand potential of a single-component 
system.I5 

In Sec. VI, the momentum distribution (na(k» 
and the pair correlation function P(ka, k~) are 
investigated. It is shown whenever momentum­
space ordering becomes important, that the equa­
tions of quantum statistics can be rewritten so 
that each solid-line factor in the grand potential and 
the distribution functions is given by a function 
N a (k), which is related to (n a (k» by Eq. (81). Thus, 
the momentum distribution plays a central role in 
quantum statistics. This aspect of the theory is 
further displayed in Sec. VII, where the master 
graph formulation of quantum statistics is written 
down. In this formulation, all "many-body self­
energy parts" (defined to have only one incoming 
and one outgoing line) of graphs have been summed 
and included as the vertex factors ga(k) of Eqs. (98). 
The intimate relation between these self-energy 
parts and momentum space ordering has been 
previously shown explicitly for a very low tempera­
ture Fermi system. I6 Equations (99) and (105) 
show the close connection between 9 a (k) and (n a (k) ). 

Sections VIII and IX deal specifically with the 
Coulomb interaction. The long range of the Coulomb 
potential results in a momentum space singularity 
which is iterated by the "ring structure" of Fig. 5, 
thereby exhibiting an apparent divergence of the 
theory. The purpose of Sec. VIII is to sum such 
ring structures wherever they occur in the graphs 
of quantum statistics by means of integral equations. 
The hope is that the solutions to these integral 
equations will no longer exhibit a momentum-space 
singularity, or, in other words, that the solutions 
will correspond to a screened Coulomb potential. 
Such a behavior is, in fact, deduced in Sec. IX in 
the high-temperature, low-density limit, where the 
well-known Debye-Hiickel expression for the pres­
sure of an ionized gas is obtained. It is only to exhibit 
this behavior and to illustrate the methods that 
this expression is derived, and the future application 
to other temperature-density regions, along with 
quantum-mechanical corrections, is also briefly 
discussed in this section. 

I. URSELL EXPANSION FOR 
MULTICOMPONENT SYSTEMS 

In the general multicomponent system, there 
will be different kinds of particles (a, (3, 1/, ••• ) 

interacting among themselves as well as with each 
other. We let N a be the number of a-type particles, 
Nfl be the number of (3-type particles, etc. It is 
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assumed that these particle numbers are all very 
much greater than unity, in which case, we may 
determine the properties of the system by computing 
ensemble averages. In particular, we assume that the 
method of the most probable distribution17 applied 
to a grand canonical ensemble can be used to calcu­
late average values of the system at equilibrium. For 
the case when the particle numbers (N a, N p, N~, ••• ) 
are each separately conserved, one obtains for the 
grand partition function 

'" 
eO! = L exp fJ(N"ga + N{Jgp + ... ) 

Na.Np.· .. -O 

x L exp (-fJEi ) , (1) 
;IN a } 

where the sum over i, corresponding to the system 
energies E" is performed for each different set {N" I 
of particle numbers (N a, N p, N~, ... ). The identifi­
cation of the Lagrange multipliers (fJ, g a, g/1, ••. ) 
is made with the aid of thermodynamics, and one 
finds 

fJ = l/kT, (2) 

where T is the temperature of the system and k = 
Boltzmann's constant; 

G = L (Na)g" = «N,,)ga + (NfJ)gfJ + ... ), (3) 
a 

where G is the thermodynamic potential; and that 

g" = ({JG/{J(Na » I<P.T (4) 

is the partial thermodynamic potential for the a-type 
particles. The quantity 0 is the volume of the system. 

We assume for very large systems that the grand 
potential f(fJ, ga, 0) is an intensive quantity, and 
this assumption is made physically reasonable by 
the Ursell expansion as wEffi as by inspection of the 
following set of equations. Thus, the thermodynamic 
properties of a system can be calculated by per­
forming certain partial derivatives of the grand po­
tential. For example, the probability for finding the 
system in the ith energy state, for fixed (N a, N/1, ••. ), 
is 

Pi = e- O'efJ(G-E,) = -fJ- 1{J(Of)/{JE i • (5) 

Thermodynamic properties of the system can be 
calculated using the following equations: 

Pressure 
(6) 

Particle number 

(7) 

17 E. Schrodinger, Statistical Mechanic8, (Cambridge Uni­
versity Press, New York, 1960), Chaps. II and VI. 

Particle density 

Energy 
(E) = G - {J(Of)/{JfJ. (9) 

Entropy 
(S) = {J(fJ-1Of)/{JT. (10) 

We have so far written down the grand partition 
function for the special case in which the particle 
numbers (N a, Np, ••• ) are each separately con­
served. Other cases may be easily included, however, 
by simply making the following observations: 

(i) The partial thermodynamic potential vanishes 
(g = 0) for components, such as photons, for which 
the particle number is not conserved. 

(ii) When a particles can transform into fJ par­
ticles, then one must set ga = g{J. This situation 
could occur if one wished to treat the different phases, 
e.g., vapor and liquid, of a substance as different 
components. 

(iii) When chemical reactions can take place in 
a system, then one obtains fewer Lagrange multi­
pliers than appear in Eq. (1). One is thereby able 
to deduce the equilibrium conditions for chemical 
reactions, which are relations among the partial 
thermodynamic potentials. For example, if the 
reversible reaction a = fJ + '11 can take place, then 
one can derive the equilibrium condition g" = g{J + g. 
from the fact that (2N IX + N{J + N.) and (N{J - N.) 
are conserved quantities. In this example, one may 
further deduce that gfl = g~ if (Np) = (N~) in the 
system of interest. 

After making the observations of the preceding 
paragraph, one concludes that Eq. (1) is the most 
general expression for the grand partition function 
of a system at rest. This expression can also be 
written as 

'" 
eO! = L exp fJ(N"ga + Npg(J + ... ) 

Na.Np. "'-0 

X [Tr (e -flH)] IN a' , (11) 

where Tr [ tNal indicates that the trace of exp( -fJH) 
is to be taken over a complete set of states for a 
system with the particle numbers (N a, Nfl, ... ) and 
Hamiltonian H. Upon comparing Eqs. (11) and (5), 
we conclude that the density matrix for this system is 

(12) 

We next introduce the interaction representation 
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into Eq. (11) by means of the operator W(8). 

W(8) == !Hoe-PH, (13) 

where H 0 is the free-particle Hamiltonian.1s We also 
use the momentum, or free-particle representation 
to evaluate the trace in Eq. (11). With these no­
tations, the grand partition function can be written 
as 

eO! = t lr L IG exp [-fJ f w~O)J 
N-oN.k""kN i-I 

X WC S) (k1k 2 ••• kv), 
\k

1
k2 ... kN (14) 

where the w:O) are single-particle energies, in the 
momentum representation, of the Hamiltonian H 0, 

and where each k, ranges over all of the free-particle 
states of all the different kinds of particles.19 The 
last factor in Eq. (14) is defined in terms of the 
matrix elements of W(fJ) by the relation (S stands 
for symmetrized) 

CSJ(1 2 ... N) 
W l' 2' ... N' 

L (IT f:·')P'(12 ... NI W(fJ) 11' 2' •.. N'), 
p' 

(15) 

where Lp, denotes the sum over all permutations 
among identical particles of the primed indices, and 
p' can always be written as a product of permu­
tations each of which refers to a different kind of 
particle. Thus, there are ITa(N a!) terms in this 
sum. The quantity fa refers to the statistics of the 
a particles and it is (+ 1) for Bose-Einstein statistics 
and (-1) for Fermi-Dirac statistics. 

Application of the Ursell Method 

The sum over all states in the grand partition 
function includes states in which N particles are 
divided into two noninteracting clusters with N 1 

particles in one cluster and N 2 particles in the other 
cluster. The contribution of such states to the grand 
partition function has an Q2 dependence. Similarly, 
states for which there are M noninteracting clusters 
of particles have a volume dependence QM. The 
method of Ursell exploits this property of the sum 
over all states and leads to an expression for the 

18 When there are external applied fields, then their effect 
can be included in H 0, but we are not concerned with such 
situations in this paper. 

IV We are excluding in what follows the fact that the 
composite particles of the system can have internal, or 
excited states. In this connection, see A. I. Larkin, Zh. 
Eksperim. i Teor. Fiz. 38, 1896 (1960) [English trans!': 
Soviet Phys.-JETP 11, 1363 (1960)], and M. Girardeau, 
J. Math. Phys. 4, 1096 (1963). 

grand potential in which factorizing or clustering 
does not occur. The final expression (19), therefore, 
exhibits the intensive character of the grand po­
tential directly. 

Clustering in quantum systems occurs not only 
because particles are dynamically interacting, but 
it can also arise from purely quantum mechanical 
effects. Thus, the effect of wavefunction overlap 
of identical particles may result in an appreciable 
contribution to the grand partition function from 
exchange integrals when the sum over permutations 
in Eq. (15) is performed. This contribution from 
exchange integrals is a "quantum clustering." It 
occurs for any representation, and must not neces­
sarily be thought of as occurring in position space. 
Furthermore, it also occurs for free particles and 
results in the well-known free-particle grand po­
tential (77) for degenerate systems. A measure of the 
effect of "quantum clustering" is given by the param­
eter p}.!, where 

(16) 

is the thermal wavelength for a particles, and M a is 
the mass of an a particle. Thus, when p}.! :::: 1, then 
quantum clustering occurs for a particles. 

The method of Ursell consists of defining "cluster 
functions" Uj,S) in terms of the Wj,B) of Eq. (15) 
by the following set of equations: 

WCB)e,) UCSJe')' 

WCSJ(~, ;,) = UCSJ(~,)UCSJ(;,) + UCSJ(~, ;,) , 

Wcs)(1 2 3) = UCSJ(1 )UcSJ(2 )UCSJ (3) 
I' 2' 3' I' 2' 3' 

+ UCSJ(1 )ucs)(2 3) + UCSJ(2 )U(sJ(3 1) 
l' 2' 3' 2' 3' I' 

etc. 

These equations are such that the Nth equation 
connects Wj, B) with all of the U~ B), U~ B), •.• , U1 B) • 
From the preceding discussion, it should be clear 
that each UlrB

) can be made to correspond to a 
physical cluster of M particles, i.e., a group of M 
particles which cannot be broken into two or more 
noninteracting groups.20 

20 In this connection, see D. ter Haar, Elements 01 Statistical 
Mechanics, (Rinehart and Company, New York, 1954), 
Chap. VIII. 
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We now define an N-particle cluster integral 
bN ({3, ga, n) by the relation21 

bN ({3,ga, n) = (nN!)-l k'~kN e~G exp [ -(3 ~w:O)J 
X U<SJkl ... kN). \k

1 
••• kN (18) 

After substituting the Ursell equations (17) into the 
grand partition function (14), and gathering together 
identical tenns, one finds that the grand potential 
can be written directly as a sum over the bN. 

'" 
t(fJ, ga, n) = L: bN(fJ, ga, n) 

N-1 

By their definition, the bN are volume independent 
for a very large system (N)> 1), and therefore, the 
grand potential has been exhibited as an intensive 
quantity. It is to be emphasized that each k, in the 
single-particle sums of (18) and (19) ranges over 
all of the free-particle states (including spin) of all 
of the different kinds of particles. 

II. USE OF THE FOCK REPRESENTATION 

The presence of interactions in the general multi­
component system gives rise to the continual anni­
hilation and creation of certain particles, subject to 
the conservation laws of the system. In order to 
describe such processes with a Hamiltonian formula­
tion, we shall resort to the Fock, or number, repre­
sentation.22 In this representation, Eq. (15) for 
W1S

) becomes 

w< S) (k1 k2 ... k N ) 

\k~ k~ ... kk 

= (k1 k2 ... kN! W( S\fJ) !ki k~ ... k~), (20) 

where the nonnalization used in Eq. (15) implies 
that the state vectors have the fonn. 

(21) 

In Eq. (21), nk is the number of particles in the 
state k and !O) is the vacuum state. We have again 
adopted the notation that the product over states k 
ranges over all of the free-particle states (including 

spin) of all the different kinds of particles. The 
creation operator a:, therefore, can represent any 
kind of particle in any free-particle state. We must, 
of course, maintain the proper commutation relations 
for fennions and bosons. Thus 

t t 
[a;, ail = [ai' a;] = 0, (22a) 

for any two bosons, whereas 

t t t ( ) [ai' a;]+ = [ai' a;l+ = 0, [a" a;]+ = Oij 22b 

for any two fermions. 
In the Fock representation, the Hamiltonian is 

written as 

H = Ho + V, (23) 

where 

(24) 

and where V gives the explicit interactions of the 
system. The general fonn of V for two-particle 
interactions is 

V 2 = t L: a:a:(k1k2! V 2 !kak4)a4aa. (25) 
klk2ka k ... 

For identical fermions it is important to observe 
the order of the annihilation and creation operators 
in (25). 

Of particular interest are systems in which electro­
magnetic interactions must be considered. We only 
consider nonrelativistic charged particles, in which 
case their interaction with photons arises from the 
prescription 

p2 (p _ eA/c)2 
2M~ 2M . 

When the vector potential A is expanded in canonical 
variables, the second quantization fonn (27) of the 
electromagnetic interaction represents the annihi­
lation or creation of zero, one, or two photons.23 

The interaction of photons with charged particles 
will be written as follows: 

V'Y = V1'Y + V2')' + vi'Y + V:'Y' (26) 

where 

(27a) 

V2'Y L: a;(k1! V2'Y !k2 , kak4)a2a~'Y) a~'Y) 
k1kak.k ... 

+ L: a:a~'Y)t(k1' k2! V2'Y !ka , k 4)aaa!'Y). (27b) 
klka k • k " 

21 It should be observed that the bN reduce in the classical We do not include the second tenn of V2'Y in the 
limit to the cluster integrals originally defined by Mayer. 
See E. E. Salpeter, Ann. Phys. 5, 183 (1958). 23 In the remainder of the paper, the particle-type-labeh 

22 V. Fock, Z. Physik 75, 622 (1932). will be used only for photons, in both equations and figures. 
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category of tenns in V2 , Eq. (25), but we assume 
that this second tenn must be written in "nonnal" 
form with the photon annihilation operator a('Y) 
always appearing to the right of the photon creation 
operator a('Y)t. Finally, we assume that each photon 
momentum sum excludes the value k = 0, which 
corresponds to a vacuum interaction, and implicitly 
includes a sum over polarization indices. 

In the case of the interaction of elementary 
charged particles with photons, we write the (real) 
matrix elements of VI'Y and VZ'Y using standard 
notation.24 

(kII VI')' Ik2' ka) = -ZI(1i,z/M)kl(21ra/Qka)!(kl ·ea) 

X 8[k •• (k.+k.))8(m.,m.) (28a) 

such as pair production, then these can easily be 
included in the general fonnalism of the next section. 

As a final matter for this section, we shall write 
down the interaction Hamiltonian V in the inter­
action representation 

V(fj) == lH'Ve-PH, = Vz(i3) + V')'(/3). (31) 

If one makes use of the identities25 

ak(!3) == ePH'ake-PH, = ak exp [-/3w~O)l 
(32) 

a~(fj) == lH·a~e-PH. = a~ exp [/3w~)], 

then one can readily verify the following expressions: 

V 2(fj) =! L: a;a;(k1kzl Vz(fj) Ik4ka)aaa4 
klk2kak. 

(33) 
and 

(28c) V')'(fj) Vl.,,(fj) + V 2 ')'(fj) + V;')'(-fj) + V!')'(-fj) , 
(34) 

In Eqs. (28), 8(a, b) is a Kronecker 8 function of 
a and b, Zl is the charge of the particle (1) in units 
of lei, m1 is the spin projection quantum number, 
and a = e2 /1ic is the fine-structure constant. The 
Lorentz condition makes possible the elimination 
of longitudinal photons, resulting in the condition 
on Eqs. (28) 

(29) 

where e; is the polarization vector of the photon 
in the ith state. 

Two remarks concerning the interactions of 
photons with charged particles must be made. The 
first is that Eqs. (28) can be used for atomic and 
molecular ions only when second-order processes, 
such as the photoelectric effect, are unimportant 
in the many-body system. A similar restriction holds 
with respect to particle spins, which we have assumed 
to remain "unflipped" in photon interactions. 
Actually, photons are not "transverse," but instead 
have two possible helicity states. One must go to a 
relativistic treatment of photon-particle interactions, 
however, in order to deal with the spin projections 
properly. 

We assume that the most general interaction 
in the multicomponent system is of the tonn 

(30) 

If there are other important types of interactions, 

24 Quantum Theory, edited by D. R. Bates (Academic 
Press, Inc., New York, 1962), Vol. III, Chap. II. 

where 

L: a;(kll V1 ')'(!3) Ik2' ka)a2a~')') 
klkska (35) 

+ L: a:a~')')\kl' kzl V z')'(!3) Ika, k4)a3a~')'). 
klkltkak .. 

III. DETERMINATION OF 
THE CLUSTER FUNCTIONS UN(S) 

The detennination of the cluster functions U1S
) , 

which are defined by the Ursell equations (17), 
follows from a study of the matrix elements of the 
operator W(i3) of Eq. (13). This operator satisfies 
the differential equation 

aW(fj)/a/3 = - V(fj)W(fj) , (36) 

where V(i3) is defined by Eq. (31). By using the 
"initial" condition W(O) = 1, one can rewrite (36) 
as an integral equation, 

W(fj) = 1 - foP dtV(t)W(t) 

26 S. S. Schweber, H. A. Bethe, and F. de Hoffmann, 
Mesons and Fields (Row, Peterson and Company, Evanston, 
Illinois, 1956), VoL I, p. 170. 
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J (~~/), }:; a 
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a 

FIG. 1. Examples of cluster vertices. The explicit 'expressions 
for these symbols are given in Eqs. (38). 

The identification of the U1S
) then proceeds by 

exhibiting the matrix elements of the iterated form 
of (37) in the form of the Ursell equations. 

The prescription for calculating the cluster func­
tions U1 B) in terms of the basic particle interactions 
can be conveniently expressed in terms of wiggly­
line cluster graphs. We therefore first define these 
graphs and then give the prescription and its proof. 

Wiggly-Line Cluster Graphs26 

The basic units of a cluster graph are symbols for 
the matrix elements in Eqs. (33) and (35), and we call 
such symbols cluster vertices. At any cluster vertex 
there are incoming and outgoing lines, equipped with 
arrows, which correspond to the momentum (and 
spin) states of the vertex function. In these symbols, 
we distinguish between internal (I) and external (k) 
momenta by drawing the internal momentum lines 
as wiggly lines and the external momentum lines as 
solid lines. The type of particle represented by the 
line is indicated with an additional Greek letter. 
Examples of cluster vertices are given in Fig. 1. 
The explicit expressions for the bracket symbols 
used in this figure are 

(t~:) I = - [(kllli V2(t) 112k2) + Ea(kllli V2(t) Ik212)] 

for identical particles (0: = (3) 

- EaE,6(kllll V 2(t) II~2) 

for nonidentical particles (0: ~ (3) 

-2E,,(kl' III V 2 -y(t) 112 , k2) 

for {3 = photon and 0: = charged particle, 

(38) 

U These graphs are a generalization for a multicomponent 
system of the wiggly-line cluster graphs defined in 1. 

+ (Ill V 2 .,(t) II,. 1312)], 

(~kJ -Ea(kll Vl.,(t) Ill, k2), 

~~l), = -Ea(Il , kll Vl.,(t) Ik2). 

A Qth order wiggly-line cluster graph is defined to 
be a set of Q cluster vertices which are entirely 
interconnected by wiggly lines. We let R equal the 
number of outgoing external lines, R' equal the 
number of incoming external lines, and I equal the 
number of internal (wiggly) lines. Since photons 
are created and destroyed by electromagnetic 
interactions it can happen that R ~ R'. The rules 
for connecting the Q vertices of a wiggly-line cluster 
graph together with the prescriptions for writing 
down the corresponding expression are as follows: 

(1) It must not be possible to complete a loop 
in a cluster graph by following the arrows on wiggly 
lines. Cluster graphs therefore always have a braided 
structure, as shown in Fig. 5 of 1. 

(2) Every wiggly line is attached to a cluster 
vertex at each end, so that the temperature variable 
t; at the tail end is less than the temperature variable 
t; at the head end. 

(3) Associate with each of the I internal lines 
and the (R + R') external lines an integer i (i = 1, 
2, ... , I + R + R') and a corresponding momentum 
I" k" or k~ according to whether the line is internal, 
outgoing external, or incoming external 

(4) Two wiggly-line cluster graphs are different 
if they cannot be topologically (including the relative 
positions of the particle-type labels and the external­
momentum labels) deformed into each other. 

(5) Temperature integrations for the Q tempera­
ture variables are performed over the associated 
product of vertex functions according to rules (6) 
and (7) for wiggly-line cluster graphs in 1. These 
two rules are somewhat more general than is neces­
sary when one considers wiggly-line cluster graphs 
in perturbation theory [because Vet) depends only 
on one temperature label]. However, after summing 
over certain types of double bonds (see Rule 6 and 
the beginning of Sec. V) the full prescription for the 
integration limits becomes essential, as in 1. 
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(6) A factor of ! is included for each identical­
particle double bond, where a double bond is defined 
to be a structure in which two wiggly lines connect 
the same two vertices (there may even be a third, 
different line in the case of photon double bonds). 

(7) When the cluster graph is written in terms 
of its associated vertex functions (using the bracket 
notation of Fig. 1), then a factor of II"(EPB

),, is 
included, where (P B)" is the total permutation for 
the a-particles of the bottom-row momenta (both 
external and internal) with respect to the top-row 
momenta. In this connection, a convention for the 
identical permutation of the k:-momenta with respect 
to the k,-momenta must be adopted and remembered 
for later use. Of course, this rule is only necessary 
for fermions. 

(8) The sum over the I internal momentum (and 
spin) coordinates is performed. (It may also be 
necessary to sum over internal states for some of the 
particles; see Footnote 19.) 

(9) When I = 0, we define the cluster graph to be 

~,)" = E"Ok.k' (with R = R' = 1). 

We next define a function T BR' (fJ) by the equation 

~ k) ,,[all different Qth-order wigglY-line] T I'" R = ~ cluster graphs with outgo\ng ex~r-
, ... k' - L.. nallines)<1 ••• J<8 an,! lDcommg • 
I R' Q-O externallineskl "'kB' 

(39) 

The quantity TRR , is a generalization of the quantity 
TN given by Eq. (I-54). It will be zero if the particles 
represented by the k, and the k~ are not all connected 
by interactions. Moreover, when R ~ R', then 
T RR' = 0 unless some of the particles are photons 
or other nonconserved particles. 

Consider next the partitions {nd of N as a sum 
of postive integers such that each n, = R corresponds 
to a T RR , function. We show below that the function 
W1S

) (fj) of Eq. (20) can be written (assuming 
that k, and k~ refer to the same kind of particle) as 

II (E!a)W(S)(k!k~ ... k~) = L II (EPB)" 

.. \kl k2 ... kN 1 .. /I,ln,')" 

X [Tn,n"T ... n., ... Tnans ,], (40) 
S S 

L n, = L n~ = L N" = N. 
,"1 i-I a 

The sum on the right-hand side of Eq. (40) is to 
be extended: (1) over all possible partions {n,} 
of N as a sum of positive integers, and similarly 
for {n~}, and (2) for each partition {n,} and {n~}, 
over all different ways in which both the N k, and 

the N k{ can be divided into groups of (nl' n2, ••• ns)­
and (n~, n~, ... nJ)-momenta. Thus for N = 4, 
(:' :')(:' :,) and C' :')(:' :,) must both be included. 
Each factor (E

PB
)" in Eq. (40) is the sign of the 

total permutation for the a-particles of the bottom 
row k~ with respect to the top row k" using the 
ordering convention given at the end of Rule (7) 
for wiggly-line cluster graphs. 

The cluster functions U1 S), which are required 
for the evaluation of the grand potential by Eq. (19), 
can be identified by placing Eq. (40) in one-to-one 
correspondence with the Nth of the Ursell equa­
tions (17). Clearly, the general expression for U1S

) is 

II (E!a)u(s,(k!k~ '" k~) = L II (EPB
)" 

a \k1k2 ... kN (n,J,tn,') IX 

s s 

Ln. = Ln~ = LN" = N, 
i-I i-I a 

where a connected product of T functions is one which 
cannot be separated into two factors with no coordi­
nates in common when one sets k~ = k •. 

We now turn our attention to the proof of Eq. (40), 
which we briefly outline in three parts. To facilitate 
this discussion, we introduce dashed-line cluster 
graphs, which are defined to be wiggly-line cluster 
graphs with the following changes: 

(a) All wiggly lines are replaced by dashed lines. 
(b) Rule (2) also includes the statement: The Q 

temperature variables are labeled so that 

o < tl < t2 < ... < tQ < tQ+l == fj. 

(c) Rule (4) is changed to: Two dashed-line 
cluster graphs are different if they cannot be topo­
logically (including the relative positions of the 
temperature labels, particle-type labels, and the 
external-momentum labels) deformed into each 
other. 

(d) Rule (5) is changed to: For any given assign­
ment of the temperature labels, the temperature 
integrations 

i'l dtQ 1'Q dt
Q

_ I ••• 1" dtl 

must be performed over the corresponding vertex 
functions. We finally distinguish between unconnected 
cluster graphs for which the Q cluster vertices are 
not entirely interconnected by dashed lines and the 
connected cluster graphs defined above. The three 
parts in the proof of Eq. (40) are then as follows: 
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Part A 

In Part A one must determine the general pre­
scription for the N-particle matrix elements of an 
arbitrary term in the iterated form of Eq. (37). The 
procedure for accomplishing this objective is to 
first (Step AI) express this arbitrary term as a sum 
over other terms each of which is in normal form; i.e., 
with all creation operators appearing to the left 
of all annihilation operators. Step Al is analogous 
to the method of Wick,27 but somewhat simpler 
because one only requires Eqs. (22) to carry through 
the analysis. An important aspect to Step Al is 
to adopt the sign convention of rule (7) for cluster 
graphs (noting that each annihilation and each 
creation operator corresponds to a variable in some 
vertex function), when determining the sign factor 
for each of the normal products. Becuase of Step A2 
below, one may discard all normal products for 
which the number Ra of a-particle creation operators 
(a = any component of system) differs from the 
number of a-particle annihilation operators. The 
resulting sign factor is then that of rule (7) times 
IIa(E!a+va), where Va is the number of a-particle 
creation (or annihilation) operators in the original 
arbitrary term. [The Va factors of lOa are included in 
the vertex functions of Eqs. (38).] 

The second step (A2) in accomplishing the objec­
tive of Part A is to determine the N-particle matrix 
elements of a normal product of creation and annihi­
lation operators, assuming that k i and k~ always 
refer to the same kind of particle. Such a matrix 
element will clearly vanish unless Ra ;;;; N a, where 
La N a = N. When the results of Steps Al and A2 
are combined, one finds that the matrix elements 
of W(!3) can be written as a sum over terns which 
are in one-to-one correspondence with those in the 
sum over all possible dashed-line cluster graphs. 

In the final step (A3) of Part A, one shows that 

II ( )Naw(sJk1k 2 ••• kN ) 

a lOa \.kik~ ... kt 
00 [all different Qth-order connected] 
~ and unconnected dashed-line = L..J cluster graph. with N external • 

Q =0 i~com.ing and N externa.l outgoing 
lines 

(42) 

In all of the cluster graphs of Eq. (42), k~ and k i 

both refer to the same kind of particle. Equation (42) 
is fairly simple to verify from the preceding two 
steps. The essential point is to show that the numeri­
cal factor associated with each of the terms identified 
in the isomorphism of the preceding paragraph is 
(!)D, where D is the number of identical particle 
double-bonds in the corresponding cluster graph. 

27 G. C. Wick, Phys. Rev. 80, 268 (1950). 

PartB 

In Part B, one separates the various connected 
parts of unconnected dashed-line cluster graphs. 
These connected parts are interrelated through their 
temperature variables, after all temperature inte­
grations are performed. They can be separated, 
however, by summing over all possible ways of 
ordering the temperature variables in the uncon­
nected parts. Since Rule (2) for cluster graphs does 
not apply to unconnected parts, it should be clear 
that the result of this sum will be to remove all tem­
perature interrelations between unconnected parts. 
One then obtains Eq. (40) from Eq. (42), except 
that each of the T RR ,(!3) is given as a sum over 
(connected) dashed-line cluster graphs instead of 
wiggly-line cluster graphs. 

Parte 

In Part 0, one proves that the sum over all 
(connected) dashed-line cluster graphs is equal to 
the sum over all wiggly-line cluster graphs for given 
external lines. The first step is to define a proper 
cluster part as a part of a cluster graph which is 
connected to the rest of the cluster graph by only one 
incoming and/or outgoing dashed line. (There may 
be any number of solid-line connections.) One then 
proves that the temperature interrelations of proper 
cluster parts can be removed, except for the end­
points, by summing over all possible orderings of 
the temperature variables as in Part B. As a conse­
quence of this sum, one achieves the objective of 
Part 0 by deriving rule (5) for wiggly-line cluster 
graphs. The proof of Eq. (40) is then complete. 

IV. ONE-PARTICLE PROBLEM 

The one-particle problem in multicomponent 
systems is to identify and remove self-energy terms 
due to the electromagnetic interactions of charged 
particles with the radiation field. If fields involving 
other kinds of nonconserved particles are important 
in a system, then the techniques of this section can 
be generalized to include these fields. In Eq. (24), 
we have written the free-particle Hamiltonian Ho 
as a sum over single-particle number operators each 
multiplied by the eigenvalue W (0) (k). We now write 
these eigenvalues as 

w~O)(k) = waCk) + EaSa(k), (43) 

where for particles with mass, waCk) = 1i,
2k2 /2M a, 

and for photons waCk) = lick. The quantity S(k) 
is a counterterm which has been included for charged 
particles, and it is defined subsequently so as to 
exactly cancel all electromagnetic self-energy terms. 
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As will be seen, these self-energy tenns have only to 
do with interaction between a charged particle and 
its own radiation field; they have no dependence on 
the temperature of the system nor on other external 
conditions. These tenns are therefore unmeasurable 
and unphysical, and it is a consistent procedure to 
cancel them by a counterterm in w~o) (k). The fact 
that the terms are infinite has no bearing on this pro­
cedure. For uncharged particles, we take S(k) = o. 

Although the analysis which we make is very 
general, it is important to see how it applies to a 
given particle and its associated cluster graphs. 
For this reason we write down four of the simpler 
one-particle cluster-graphs using the notation of Fig. 2 
and the explicit interactions (28). One-particle 
cluster graphs are characterized by one incoming 
line, coming from a vertex labeled to, and one out­
going line, going to a vertex labeled t2 • If the incoming 
line is solid, then we define to = 0, and if the outgoing 
line is solid, then we define t2 == {3. Either or both 
lines may be wiggly lines, however, because one­
particle cluster graphs may be parts of larger wiggly­
line cluster graphs. From Fig. 2 we have 

T ( 1 ) 2'lI.z2a (h 2)2l2 "(1" A )2l-1 
I t2 - to, I = E -n- M I f:' I· ea a 

where (12 = 11 - la); 

T2(t2 - to, ll) 

= E(27rZ2a/n)2W/Mlli L: (il "ea)2(il "es)2 
la ,la 

X Z;IZ~I r' ds. f:' ds, {' ds, {' dSI 

X exp (S4 - S3) [w~o) - w~o) - w~o)] 

(44a) 

X exp (S2 - Sl) [w~o) - w!o) - wiO)], (44b) 

where (12 = II - la, 14 = II - Is); 

Ta(t2 - to, ll) = E(27r;2aY(~rl~ 1~. l~(iJ"ea)2 

X (i2"es)21;II~1 r' dS4 f' dSa f' dS2 f' ds! 

X exp (S4 - SI) [w~O) - w~O) - w~O)] 

(44 c) 

where (12 = 11 - la, 14 = 12 - Is = 11 - la - 15); 

Tit2 - to, It) = 2E(7r~aY(~r 1~' (ea"e4)2Z;II-;1 

1, = 

" '. 

f, 

FIG. 2. Four of the simplest one-particle cluster graphsl 
in which the charged 'particle line labels have been omitteCl 
for convenience. PhYSICally, these graphs represent the sim­
plest ways in which a charged particle can emit or reabsorb 
one or two virtual photons. 

(44d) 

where (12 = II - la - 14). 
It is important to observe that except for the end­

point temperature variables to and t2 , the terms 
of Eq. (44) have been written down completely 
independently from the rest of the wiggly-line 
cluster graphs of which they may be part. This 
could not have been done in the dashed-line fonnu­
lation described below Eq. (41). It is this essential 
feature of wiggly-line cluster graphs which makes 
possible the analysis of self-energy effects that we 
now make. Proceeding then, let us make the nature 
of the above equations more transparent by re­
arranging the right sides of them with some straight­
forward algebra. Thus, we write 

X [T{(t2 - Sa, II) + SI(lI)] 

X [T{(sa - SI, II) + SI(II)], 
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where 

X exp (s. - SI) [w~O) - w~O) - w~O)] 

X [Tf(S4 - S2, l2) + SI(l2)], 

T '(t l) (211"Z
2a)f/j/)2 t I 2 - SI, I == E -0- \M 11 

X 1: (il ,ea)2l;;-l[wiO) - w~O) - w~O)rl 
1, 

X exp (t2 - SI) [wiO) - w~O) - wiD)], 

TW2 - SI, ll) == 2E(1I"~2arG;r l~. (ea,e.)' 

and 

X l;;-ll~l[wiO) - w~O) - w~O) - w~O)rl 

X exp (t2 - SI)[W~O) - w~O) - w!O) - w~O)], 

(46) 

X r (0) + (0) _ (0)]-1 
lW2 Wa WI , 

(47) 

X r (0) + (0) + (0) (0) ]-1 
~a w. W2 - WI • 

One now observes that each of the quantities in 
Eqs. (44) has been written in tenns of two distinct 
functions. [T a has not been completely rewritten in 
this manner, but is so exhibited in Eq. (66).] The 
functions Tr and T~ are temperature dependent 
and will be interpreted as IIstructure parts" of one­
particle cluster graphs. That is, they represent the 
contribution from self-emission and absorption of 
virtual photons which produce a finite effect. The 
quantities SI(ll) and S4(ll), on the other hand, are 
temperature independenes and become divergent 
integrals in the limit 0 _ ex>. The interpretation of 
these tenns as IIself-energy parts," as well as the 
identification of Tr and T~, can really only be 
justified by the subsequent analysis. We note, also, 
that there are other divergent tenns [including Sa(ll), 
Eqs. (66) and (68)], which occur in other one-particle 
cluster graphs and which are also temperature 
independent. We have encountered no divergent 
terms which have a temperature dependence, and 
it is almost certain that there are none. 

28 By temperature independent is meant that these parts 
do not depend on any temperature integration variables, 
such as 81. 

We wish to treat tenns of the type SI and S, in 
a systematic manner, because they are divergent. 
The systematic treatment which we make will then 
result in the classification of these tenns as self­
energy tenns, and therefore, we will be able to 
discard them. In order to account for all possible 
self-energy tenns, it is necessary to calculate for 
each charged particle all possible ways to emit and 
reabsorb virtual photons, as illustrated partially 
in Fig. 2. We begin then by defining a quantity 
L S(t2, t l , ll) to be 

LS(t2, tl , II) == 1: [all different one-particle !.-graphs], (48) 

where a one-particle L-graph is defined to be a 
one-particle cluster graph for which: (1) the tem­
perature integration over the variable tl at which 
the incoming line is attached is not perfonned, (2) 
the step-function factor29 0(t2 - 8) is associated with 
the vertex S to which the outgoing line attaches 
(at its tail end), and (3) a factor O(s~ - 8,) is asso­
ciated with each of the other vertices S,' where s~ 
is the temperature variable at the vertex where the 
outgoing particle line attaches at its head end. (Note 
that 11 implicitly includes a particle-type label.) 
It is easy to write down the L-graphs of Fig. 2 from 
Eqs. (45), because the step-function factors do not 
affect the value of a one-particle cluster graph. The 
introduction of the step-function factors is useful, 
because it makes it possible to extend all of the 
temperature integrations in the expressions for L­
graphs to the full temperature range 0 to (3 without 
changing their values. 

We next define a quantity G s(t2 , tl , 1): 

GS(t2, t l , 1) == 0(t2 - t1) + ELs(t2, t1, 1). (49) 

With the aid of this function it is possible to write 
down an integral equation for Ls(t2, tl , 1) as follows: 

Ls(t" tl , 1) == llldt GS (t2 , t, I)Ps(t, tl , 1, Gs), (50) 

where 

[

an different one-particle L-graPhS] 
which cannot be separated into two 
parts by cutting one or two non-

P S(t2, tl , 1, G s) == 1: photon (wiggly) lines, and in which • 
Ie ds Gs (s., 8, 1 ') is substituted for 
each internal line characterized by 
82, 81, and l' 

(51) 

The introduction of the integral equation (50) is an 
essential ingredient for the following treatment of 
the self-energy difficulties associated with the one­
particle problem. 

2t The step function 6(t - 8) is defined to be unity when 
t > 8, and to be zero when t ~ 8. 
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As Transformation 

We must now systemically remove from Ls and 
P s all divergent terms of the form 8 1 and 84 , Eqs. 
(47), wherever such terms occur in one-particle L 
graphs. An elegant method for accomplishing this 
objective is that of the A transformation of II. The 
simpler version of this transformation presented 
here will be called the As transformation. It makes 
use of two functions 

Thus, the transformation equation (55) leads to 
the cancellation of the counterterm in Eq. (43). 

We next invert the first of the transformation 
equations (54) with the aid of the integral equation 
for GO(t2 - t 1, 1) [second line of (53)]. This gives 
the result 

GS (t2, t" 1) = f dt exp [€(t2 - t)8(1)] 

X G~(t2' t, I)GoCt - tl , 1), (57) 

AS(t2 - 11. 1) == 8(1) OCt2 - t1), 

where 8(1) will be defined later, and 

(52) where 

GO(t2 - t1 , 1) == 0(t2 - t1) + €A S (t2 - tl , 1) 

X exp [f(t2 - t1)8(1)] 

0(t2 - t1) + e f ds As(t2 - s, l)Go(s - t1 • 1). 

(53) 

The As transformation is then defined to be a 
transformation involving the quantities Gs, L s, P s, 
and the particle-photon vertex functions. The two 
basic transformation equations are 

L~(t2' t1 • 1) == exp [-eCt2 - tl)8(1)] 

X {L S (t2, t1 , 1) - f dt GS(t2, t, I)As(t - tl , I)} (54) 

and 

(!:):,0(t2 - t1) = {dt GO(t2 - t, 11)(!:).,O(t - t1) 

X exp [-Ei28(11) + etI 8(I2)], (55) 

where the unprimed bracket symbol can be any of 
the particle-photon vertex functions of Fig. 1, with 
the photon momentum dependences suppressed. 

We now wish to prove the following two theorems: 

I. The sum over all possible one-particle cluster 
graphs can be expressed in terms of the primed 
quantities (54) and (55) instead of the corresponding 
unprimed quantities. 

II. If one-particle cluster graphs are calculated 
using only primed quantities, then all self-energy 
terms can be eliminated with the proper choice 
of 8(1). 

After substituting the first line of Eq. (53) into 
Eq. (55), one can carry out the integration over 
t in (55). Then, upon identifying the 8(1) of (52) 
with the counterterm in Eq. (43), one finds the 
simple result 

(56 

G~(t2' t1 • 1) == 0(t2 - t1) + eLW2, t l , 1). (58) 

Now, according to Eqs. (48)-(51), the sum over all 
possible one-particle cluster graphs is given by 
J:: dt GS(t2 , tl , 1). With the aid of Eqs. (53) and (57), 
one can show that 

(59) 

which demonstrates that G;(t2 , t1, 1) also leads to a 
correct calculation of the sum over all possible 
one-particle cluster graphs, thereby proving the 
first theorem. 

The explicit prescription for calculating L;(t2 , t l , 1) 
can be determined from Eq. (54) by substituting 
Eq. (57). This gives 

L~(t2' tl , 1) = exp [-€(t2 - t1)8(1)]LsCt2, t1 , 1) 

- f dt G~Ct2' t, I)AsCt - t1 • 1), (60) 

a result which is true for any function 8(1). In order 
to see how to choose 8(1) in a useful manner, we 
use Eqs. (55) and (57) to prove that 

f dt GS (t2, t, 11)(~J, O(t - tl) = exp [et2S(11)] 

X f dt G~(t2' t, 11)(U:, oCt - t1) exp [-et18(12)]' 

(61) 

Therefore, if we define £'(t2, t1 , 1) in analogy with 
the integral equations (50) and (51) as 

£'(t2, t1 , 1) === f dt G~(t2' t, I)P~(t. til 1, G~), (62) 

where P; (t2 , t1, 1, G;) is defined in the same way 
as P s (t2, t1, 1, G s) except that primed functions are 
used, then we may conclude from (61) that 

~'(t2' tIt 1) = exp [-€(t2 - t1)8(1)]LsCt2' tit 1). (63) 
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Upon substituting this result into Eq. (60), we 
obtain the final expression 

L~(t2' t1 , 1) = £'(t2, t1 , 1) 

- { dt GW2, t, I)As(t - t1 , 1) 

= {dtGW2' t, 1) 

X [P~(t, t1 , 1, G~) - As(t - tl , 1)]. 
(64) 

Equations (56), (59), and (64) are the important 
results of the As transformation. They show that for 
any function S(I), one may calculate the sum over all 
one-particle cluster graphs using primed quantities 
instead of unprimed quantities. Moreover, they show 
that the counterterm S(I) can be cancelled by per­
forming the As transformation. It now only remains 
to define S(I) as 

S(I) == the temperature-independent 

part of P;(t2 , tl , 1, G;). (65) 

With this definition, together with the expression 
(52) for As(t2 - t1 , 1), it should be clear that all 
terms of the form SI(l) and S4(l), Eqs. (47), are 
explicitly subtracted away in the prescription (64) 
for calculating L;(t2, tl , 1), which proves Theorem II. 
We may now justifiably call such terms self-energy 
terms, because their sum cancels the counterterm 
of Eq. (43). 

We next observe that the exponential factor 
in Eq. (59) is exactly the factor which is needed to 
cancel the counterterm S(I) wherever it appears in 
the entire formalism for calculating the grand 
potential via Eqs. (19) and (41). Therefore, all 
charged-particle self-energy terms due to the occur­
rence of electromagnetic interactions are eliminated 
from the theory, and we have carried out a complete 
renormalization program for this nonrelativistic 
theory.ao 

It is important to observe that after the As 
transformation there is a nonvanishing contribution 
from one-particle cluster graphs. The nonvanishing 
terms must be due to the structure of a charged 
particle which arises when it interacts with the 
electromagnetic field. The prescription which results 
from the As transformation for calculating this 
effect is, as follows: 

30 A renormalization program in quantum statistics has 
also been conducted by 1. A. Akhiezer and S. V. Peletminskii, 
Zh. Eksperim. i Teor. Fiz. 38, 1829 (1960) [English transl. 
Soviet Phys.-JETP 11, 1316 (1960)]. These authors use the 
methods of conventional field theory and apply them to the 
relativistic theory of a system composed of electrons, positrons, 
and photons. 

(1) Replace all particle energies w(O)(k) by w(k). 
(2) Calculate one-particle cluster graphs using 

Eqs. (64) and (58). 

Thus, one obtains for the one-particle cluster graphs 
of Fig. 2, using Eqs. (45), 

X Tj(t2 - Sa, ll)T{(sa - Sl, 11), (66) 

f
t' ft' f8' 

Ta(t2 - to, 11) = t. dSI 8, dS4 8, ds2 

X (2?rg2a )(~r 1~ f.= (il • ea)2l;1 

X exp [(S4 - SI)(WI - W2 - Wa)] 

1
1. 

Tit2 - to, ll) = dSIT~(t2 - Sl, 11), 
I. 

where one must refer to Eqs. (44) for the various 
definitions of 12 and 14 , and where T{ and T~ are 
given by Eqs. (46) with the replacements w~o) -+ Wi. 

The electromagnetic self-energy term S(I) which 
has been eliminated from the theory is given by 

S(I) = SI(l) + Sa(l) + Sil) + "', (67) 

where SI(l) and S4(l) are given by Eqs. (47) with 
the replacements w~o) -+ Wi' The term Sa(ll) is 

Sa(ll) = ~e?r~2a)\~r1~ If.t, l~(il·ea)2 
X (i2·e5n;ll~l(w2 - W4 - W5)-2 

X [(WI - W2 - W3)-1 - (WI - W3 - W4 - W5)-I], (68) 

where 12 = 11 - la and 14 = II - 13 - 15)' This term 
is a divergent integral in the limit Q -+ <Xl, as are 
SI(ll) and S4(ll), but the As transformation has 
shown that such infinities are of no consequence 
to the physical theory. 

V. LINKED-PAIR EXPANSION OF 
THE GRAND POTENTIAL 

The linked-pair expansion of the grand potential 
is derived by substituting Eq. (41) for the cluster 
functions of quantum statistics into Eq. (19). It is 
a prescription for calculating the grand potential 
directly in terms of the basic vertex functions of 
Fig. 1 using the expressions (38) with the single-
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particle energies w(k) [not w(O) (k)], and diagram­
matically it corresponds to connecting together the 
solid external lines of wiggly-line cluster graphs in 
all possible ways. The procedure for handling one­
particle cluster graphs will always be to use Eq. (64). 

Before deriving the linked-pair expansion of the 
grand potential, we make a brief study of the 
two-particle problem. When the forces between two 
particles can be represented by a short-range 
potential V 2 (local or nonlocal), then the "effective" 
interaction is obtained by a repetition of the matrix 
elements of V 2 (t) for various possible intermediate 
states, as in ordinary perturbation theory. Dia­
grammatically this is equivalent to inserting double 
bonds in wiggly-line cluster graphs (see Rule 6 in 
Sec. III). The sum over all possible ways of including 
such double bonds for two particles leads to the 
conclusion that one may replace the short-range 
V2 (t ,) by 

R(t2, t,) = -{I - [. dsV2(s) 
" 

+ f' dS2 r' ds, ViS2) Vis,) ... } V 2(t,) 

= -(a/at1){ exp(t2H~2» exp [-(t2 - t,)H(2)] 

X exp ( - t,H~2» - I}, (69) 

where it is not necessary to use the Fock represen­
tation for Vet) in this case. The reason why the sum 
of Eq. (69) occurs independently of the rest of the 
wiggly-line cluster graph has already been discussed 
after Eqs. (44) in connection with one-particle cluster 
graphs. The function R(ta, t,) is discussed in detail 
in Ii however, we note here that its matrix elements 
can be expressed completely in terms of two-body 
wavefunctions, thereby admitting the realistic situ­
ation obtaining when the two-body interaction 
contains a hard core. 

We call a matrix element of R(t2 , t, ) a pair function, 
and we use square-bracket symbols for pair functions: 

+ e,,(klk2 ) R(t2' t,) jkJra) 

for identical particles (a = (J), 

= e"ep(k}k2 / R(t2 , t,) jkak4) 

for nonidentical particles (a ~ (J). (70) 

The "upper" temperature variable t; associated 
with a pair function is determined graphically by the 
outgoing lines at the vertex t;. The determination 
of ti in the possible cases which can arise is shown 

Ij Ik 

X 1 "[~ :'1 if I j < Ik 

Ii 

~ k tk[1, ~J if I j > Ik 

13 k Ii 

FIG. 3. Cluster vertices for pair functions. The upper 
temperature variable of a pair function is determined by the 
nature of the outgoing hnes and the labels of the other 
vertices where the wiggly lines (if any) attach. 

in Fig. 3. We henceforth assume that all two-particle 
cluster vertices which correspond to short-range 
interactions represent pair functions (see Rule 5 
in Sec. III for remarks concerning integrations 
over temperature variables in this case). The only 
remaining double bonds in wiggly-line cluster graphs 
are therefore those which involve one or two photons 
and those connecting vertices at least one of which 
represents the long-range Coulomb potential. 

We now state the general result for the grand 
potential which one obtains when Eq. (41) is sub­
stituted into Eq. (19) and all terms are gathered 
together which become identical after relabeling 
of k-momenta. 

nf({J, ga, n) = n L foC{J, g", n) 
" 

~ 

+ L [all different Qth-<>rder linked-pair O-graphs], (71) 
Q-I 

where the first, or free particle, term is given by Eq. 
(77). The proof of Eq. (71) will be given after we 
have defined Qth-order linked-pair O-graphs. 

Linked-Pair t-Graphs 

For the purpose of studying the distribution 
functions of a system, such as the momentum dis­
tribution, it is necessary to define not only linked­
pair O-graphs, but also linked-pair t-graphs for t > O. 
We, therefore, define a Qth-order, linked-pair t-graph 
(t = 0, 1, 2 ... ) to be a collection of Q cluster 
vertices (see Figs. 1 and 3), which are entirely 
interconnected by m solid lines and n wiggly lines, 
and which have t incoming external solid lines 
and t outgoing external solid lines. The type of 
particle represented by the line is indicated by a 
Greek letter (a, (J, ... ). Linked-pair O-graphs 
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which ca.n be separated into two parts by cutting 
a single photon line are excluded, because in this 
case the photon always has zero momentum [see 
comment below Eqs. (27)J. The rules for connecting 
the Q cluster vertices by the (m + n) internal lines 
of a linked-pair r -graph, and the procedures for 
determining the corresponding expression are as 
follows: 

(i) When connecting the (m + n) internal lines 
to the Q vertices, the n wiggly lines must be con­
nected according to Rules (1) and (2) for wiggly­
line cluster graphs (Sec. III). 

(li) The only wiggly-line double bonds which can 
occur are those which involve an electromagnetic 
interaction vertex. A factor of ! is included for each 
identical particle (wiggly-line) double bond. 

(iii) If r ~ 0, then associate the external lines with 
certain pregiven momenta, such that the incoming 
lines refer to the same set of particles as the outgoing 
lines. 

(iv) Two linked-pair r-graphs are different if 
their topological structures, including line types, line 
directions, and particle-type labels, are different. 
External lines with different momentum labels are 
regarded as being distinguishable when they leave 
(or enter) different vertices. _ 

(v) Associate with each internal line a different 
integer i(i = 1, 2, ... , m + n) and a corresponding 
momentum k. or I. according to whether the line 
is solid or wiggly. 

(vi) According to Rules (i)-(v), every linked-pair 
r-graph consists of interconnected wiggly-line cluster 
graphs. For each cluster graph, perform the inte­
grations over the temperature variables of its cluster 
vertices according to Rules (6) and (7) in I for 
wiggly-line cluster graphs. 

(vii) Assign a factor 8-1 to the entire linked-pair 
graph, where 

8 = symmetry number. (72) 

The symmetry number 8 is defined to be the total 
number of permutations of the m integers associated 
with the solid internal lines that leave the graph 
topologically (including the positions of these 
numbers relative to the m solid internal lines and 
their particle type labels) unchanged. 

(viii) Assign a factor IL(ePB
)" to the graph, 

where (PB )" is the total permutation for the a­
particles of the bottom-row momenta of the Q vertex 
functions with respect to the top-row momenta. 

(ix) Assign a factor (EVk)" to each solid internal 
a-particle line, where 

Vk == exp f3(g - wk)/[l - E exp f3(g - Wk»)' (73) 

(x) Finally, sum over all (m + n) internal mo­
mentum (and spin) coordinates according to the 
particle type labels of these lines. (It may also be 
necessary to sum over internal states for some of the 
particles; see Footnote 19.) 

The above rules are equivalent to those of I for a 
single-component system. The one-and two-vertex 
linked-pair r -graphs of a single-component system 
for r = 0 and r = 1, are shown in Fig. 10 of 1. 

The general proof that Eq. (71) is correct proceeds 
as follows. We first define numbered O-graphs to be 
linked-pair O-graphs with the following changes: 

(a) One-particle cluster vertices, i.e., vertices 
with one line in and one line out, corresponding 
to e8kk , are allowed (see Rule 9 for wiggly-line 
cluster graphs). 

(b) Rule ix is changed to: Assign a factor 

[e exp f3(g - Wk)]" 

to each solid internal a-particle line. 
(c) Rule (vii) is changed to: The numerical factor 

associated with each number O-graph is IL (N" !) -1, 
where N" is the number of solid (internal) a-particle 
lines and LaN ex = m. [This factor can be verified 
from Eq. (19).] 

(d) The m solid-line integers of Rule v are assigned 
to the solid (internal) lines. 

(e) Rule (iv) is changed to: Two numbered 0-
graphs are different if they have different topological 
structures, including the positions of the m numbers 
of (d) relative to the solid lines and their particle 
type labels. 

With the aid of the concept of numbered O-graphs, 
it is easy to see that substituting Eq. (41) into 
Eq. (19) (and using the results of Sec. IV) gives 

'" " [aU different Qth-order] Qf(fJ, g", Q) = L.J numbered O-graphs • (74) 
0-0 

Let D be the total number of different numbered 
O-graphs which correspond to the same linked-pair 
O-graph, where for the present we include among 
the latter O-graphs those with one-particle cluster 
vertices E8kk ,. From the definition of the symmetry 
number below (72), it is easy to see that 

D = 8-1 II (N,,!); (2: N" = m). (75) 
" a 

But after properly relabeling k-momenta, the D 
numbered O-graphs are seen to be equal. We may 
therefore deduce the following result: '" [all different Qth-order linked-pair] 

" O-graphs, including those with one- (76) Qj(f3, g ex, Q) = L.J particle cluster vertices , 
0-0 
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where the internal solid-line factors of the O-graphs 
on the right-hand side of (76) are still those corre­
sponding to (b) above. 

We now observe that the free-particle grand 
potential 

L fo«(:J, (Ja, n) 
a 

= _12- 1 L E., LIn [1 - Ea exp (:J«(J - Wk).,] (77) 
a k 

can be easily derived from (76) by summing over 
those linked-pair O-graphs constructed entirely 
from one-particle cluster vertices. We finally consider 
all those linked-pair O-graphs in (76) which do not 
include anyone-particle cluster vertices. This set 
of terms is in one-to-one correspondence with those 
in the second term of (71). By summing over all 
possible ways of including one-particle cluster 
vertices in the set of terms from (76), one obtains 
the solid-line factors (EVk) a of (73) for linked-pair 
O-graphs. Moreover, after performing this sum, there 
are no longer any O-graphs with one-particle cluster 
vertices in (76), and the proof of (71) is completed. 

VI. DISTRIBUTION FUNCTIONS 

In this section we show how to calculate dis­
tribution functions in terms of the linked-pair 
t-graphs of the previous section. In particular, we 
are interested in the momentum distribution and 
the pair-correlation function, which are the prob­
abilities for finding one and two particles in mo­
mentum states. The momentum distribution has 
been studied in detail in II. Thus, Eq. (II.4) for 
(n(k» remains valid for a multicomponent system 
provided the notation of Eq. (14) is used: 

(na(ka» = e- Of j; ~i k'~kN lG exp [ -(:J ~ W~O) ] 

X W<s,(kl 
••• kN)(£ (h,.k

a
)' (78) \It l ••• kN ;-1 

Equation (78) gives the probability for finding an 
a particle with momentum (and spin) ka in the 
system, where the subscript indicates the type of 
particle so that only those k. referring to a particles 
contribute to the final Kronecker 0 of (78). 

By referring to Eqs. (14) and (43), one can readily 
see that the momentum distribution (78) can be 
obtained by a simple functional differentiation of 
the grand partition function 

(na(k» = -(:J-le-llf{[o/5wa(k)]eOf}w, (79) 

where the matrix elements of W(m are to be held 
fixed during the differentiation. We have chosen to 
differentiate with respect to waCk) instead of w~O)(k), 

because after carrying through the renormalization 
program of Sec. IV the quantity SaCk) is eliminated 
from the grand potential f. Thus, one may reduce 
Eq. (79) to a calculable form by the following three 
steps: 

(n.,(k» = _(:J-l {[o/ 5w,,(k)] Of} v 

= v,,(k) + v,,(k)[1 + E"V.,(k)] 

X {[%v,,(k)] L (a~~~~~h1)air}v, 

= v,,(k) + E"v,,(k)[1 + E"V,,(k)] 

X L (all linked-pair l-graphs)k a • (80) 

We have used Eqs. (71) and (73) to obtain the second 
line of (80), and the subscripts V indicate that the 
vertex functions of Figs. 1 and 3 are to be held con­
stant during the functional differentiation. Finally, 
one can modify a proof due to Lee and Yang3l to 
verify the third line of (80). Linked-pair I-graphs 
were defined in the preceding section. 

The third line of Eq. (80) expresses the momentum 
distribution of the a particles in a multicomponent 
system in a form which is suitable for calculation 
for some systems. But as we have shown in II, Eq. 
(80) is not in a suitable form for calculating the 
momentum distributions of very low temperature 
systems. Therefore, it is of value to carry through 
the following steps in the analysis of (n,,(k», which 
are essential for low-temperature systems and which 
do not complicate the calculations for other systems. 
Thus, as in II, we define a quantity N a (k), 

N a(k) == exp [(:J(g - wk).,][1 + E.,(n.,(k»] 

(k) [ (k) "" (alllinked-pair (81) = v., 1 + Va £..J l-graphs)k a ]. 

The second line of (81) can be rewritten as an 
integral equation for N., (k) after introducing the 
concept of reducible and irreducible graphs. 

Definitions 

A linked-pair t-graph is called reducible if by 
cutting two of its solid internal lines open the entire 
graph can be separated into two (or three) dis­
connected t-graphs one of which is a I-graph. An 
irreducible r-graph is a linked-pair r-graph which 
is not reducible, with its solid internal lines repre­
senting factors EaN a(k) instead of Eava(k). Examples 
of reducible and irreducible O-graphs for a single 
component system are shown in Fig. 1 of II.32 

With the above definitions of reducible and 
81 See the end of Appendix C in T. D. Lee and C. N. Yang 

Phys. Rev. 117, 22 (1960). ' 
32 The second reducible O-graph in Fig. 1 of II is missing 

a line and one of the lines in the next to last irreducible 0-
graph should be wiggly. 



                                                                                                                                    

364 F. MOHLING AND W. T. GRANDY, JR. 

irreducible graphs, one can readily verify that the 
second line of (81) can be rewritten as 

N ,,()r.) = v,,()r.)[1 + N ,,()r.) L (~!~e~~;~~hs~~edl. (82) 

Equation (82) represents a set of coupled integral 
equations for the functions N" (k) of a multi­
component system. When substituted into the first 
line of Eq. (81), the solution for N ,,(k) yields the 
momentum distribution (na(k». If the steps of 
Eqs. (81) and (82) are unnecessary for a particular 
system, then the solution of (82) by iteration yields 
the third line of (80). Therefore Eqs. (81) and (82) 
can be used to calculate the momentum distribution 
for any system. [Here we encounter an essential 
difference from other formalisms, e.g., that of Bloch 
and De Dominicis,3 which employ the functions 
v,,(k) of Eq. (73) throughout. When particle inter­
actions are included, these functions are unphysical 
at low temperatures and in the present formulation 
are replaced, after resummations, by the functions 
N ,,(k). Thus, while other authors33 obtain expres­
sions similar to Eq. (83) for the grand potential, 
say, these expressions do not contain this essential 
analysis of the distribution functions.] We return 
to a further analysis of these last two equations in 
the next section. 

Grand Potential 

When the considerations of Eqs. (81) and (82) 
are important for a calculation of the momentum 
distribution, then it is important to also express the 
grand potential in terms of irreducible graphs. The 
correct expression is 

nf(f3, N '" n) = LEa LIn [1 + Ea(n,,(k»] 
" k 

_" " [ -l(k)N (k) _ 1] + " (al) irreduc\ble £....i E a £....i Va a L...i lInked-paIr 
" k O-graphs). 

(83) 

In order to verify that Eqs. (83) and (71) for the 
grand potential are equivalent, it is simplest to 
calculate the average number of particles (N a) by 
substituting (83) into Eq. (7) [(N ,,) should not be 
confused with the function N a(k) defined by Eq. 
(81)]. One then verifies that (83) yields (N a) = 
~k(na(k», which shows that both expressions (83) 
and (71) satisfy the same linear partial differential 
equations in the variables ((3g,,) [Eq. (71) satisfies 
Eqs. (7) by definition]. Therefore, the expressions 
(71) and (83) can differ at most by a temperature­
dependent constant. Investigation of the high­
temperature limits of these expressions then leads 
to the conclusion that this constant is zero. Q.E.D. 

33 For example, J. M. Luttinger and J. C. Ward, Phys. 
Rev. 118, 1417 (1960). 

Pair. Correlation Function 

The pair-correlation function P(k", kp) is defined 
to be the probability that an a particle in a system 
has momentum (and spin) k, while a {3 particle has 
momentum k'. (We may, of course, also be interested 
in the case a = (3), 

P(k", k~) == (n,,(k)n~(k'» - (n,,()r.»ok.k,Oa.~. (84) 

It is related to the fluctuation in particle number 

(Lln,,()r.)Lln~()r.'» == (n,,()r.)n~()r.'» - (n,,(k»(n~()r.'» (85) 

by the equation 

(Lln,,()r.)Lln~(k'» = P()r.a, k~) - (n,,()r.»(np()r.'» 

+ <n,,()r.»ok.k,Oa.~. (86) 

In analogy with the derivation of Eqs. (80) from 
Eq. (78) for the momentum distribution, one may 
verify that the general expression for the pair­
correlation function is given by 

P()r.a, k~) 

= (3-2e- D'[ e-P"'. (k) ow~~k') e~"'· (k) Ow~()r.) e Df] W 

= (n,,(k»(n!3(k'» 

_ {3-1e-P"'. (k)[_o_,l"'· (k) (n,,(k»] 
ow~(k) v 

= (na(k»(n~(k'» - (n"(k»ok.k'O,,.~ 

+ v~(k')[1 + E~v!3(k')]{[%v~(k')](na(k'»lv 
= (na (k»(n~()r.'»(1 + Ea Ok. k' Oa .~) 

+ EaE~V a(k)[1 + Eava(k)]v~(k')[1 + E~v~(k')] 
x L (all linked-pair 2-graphs)k •. k~'· (87) 

We have used the first line of Eq. (80) to derive the 
third line of (87), and Eq. (73) to derive the fourth 
line. The last line of Eq. (87) can be verified by 
substituting the third line of Eq. (80) into the fourth 
line of (87) and then using the identity 

E~[%v~(k')] L (ail_i~~~h~)-E~ir = EaOk.k'O".~ 

X [ " (all linked-pair]2 + " (all linked-pair 
£... l-graphs)k. £... 2-graphs)k •. k~' (88) 

In deriving this identity, it has been assumed that 
the basic interactions of the multicomponent system 
do not permit I-graphs in which the incoming and 
outgoing external lines refer to different particles. 

The last line of (Eq. (87) expresses the pair-
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correlation function of a multicomponent system 
in a form which is suitable for calculation for some 
systems. As with the momentum distribution, how­
ever, we must incorporate the analysis of Eqs. (81) 
and (82) in order to calculate the pair-correlation 
function for low-temperature systems. Weare, 
therefore, led to use the concept of reducible and 
irreducible 2-graphs, introduced below Eq. (81). 

It is a simple matter to generate the sum over 
all linked-pair 2-graphs from the sum over all 
irreducible linked-pair 2-graphs. Thus, one may 
readily verify that the following identity is true: 

[N (k)]2[N (k,)]2 ~ (all irreducible linked-pair 
" (l L....t 2-graphs)k •• k'p 

= [v,,(k)Y[v{l(k,)]2 E ~a!l.~?:'ed-pair 2-graphs) (89) 

If this identity is substituted into the last line of 
Eq. (87) and if the last lines of Eqs. (80) and (81) 
are used, then one obtains the following expression 
for the pair-correlation function: 

P(k" , k;) = (n,,(k»(n{l(k'»(1 + Ea 8k • k ,8a .{l) 

+ E"Ep[1 + Ea(n,,(k»][1 + Ep(nfl(k'»]N a (k)Np(k') 

X ~ (all irreducible linked- (90) 
L....t pair 2-graphs) k •• k 'p • 

We see from this equation that once the solution 
to the coupled integral equations (82) is known, then 
one may calculate P(k", k~). Alternatively, use of 
the iterated forms of Eqs. (82) in Eq. (90) is equiv­
alent to the calculation of the pair-correlation 
function by the last line of (87). 

Our purpose in this section has been twofold. In 
the first place, we wished to show that the distri­
bution functions of a many-body system can be 
expressed in terms of the linked-pair {"-graphs of 
Sec. V. In the second place, we wished to show that 
the momentum distribution occupies a central role 
in the theory and that the other distribution func­
tions and the grand potential can all be expressed 
in terms of the functions N" (k), instead of v" (k), 
which are directly related to the momentum dis­
tributions (na(k» by Eq. (81). We are not interested 
any further in the pair-correlation function in this 
paper. 

VII. MASTER GRAPHS 

In Sec. VI, we expressed the grand potential and 
the distribution functions in terms of irreducible 
{"-graphs. In irreducible r-graphs, there are no 
constituent parts which consist of only one solid 
line in, one solid line out, and no connecting wiggly 
lines. Such graphical parts do appear in the linked­
pair r-graphs of Sec. V, but in the irreducible {"-graph 
formulation they are all contained in the functions 

N ,,(k) of Eq. (81). The importance of collecting 
together these parts has to do with the momentum­
space ordering associated with low-temperature 
systems. Thus, we have shown in II that the func­
tions va(k) which appear in Eqs. (80) are not very 
closely related to the momentum distribution (na(k» 
for very low temperature Fermi systems with particle 
interactions. In order to extract the dominant low­
temperature behavior of (n" (k», one is forced to 
analyze the integral equation (82) in considerable 
detail. 

Now, in the irreducible r-graphs, there may still 
occur graphical parts with one line in, one line out, 
and no other connecting lines, where either or both 
of these lines are wiggly. Moreover, it was shown 
in the investigations of Sec. II in II, that these 
graphical parts were just as important for under­
standing low-temperature momentum-space ordering 
as those with two solid lines. It was therefore neces­
sary to collect together these graphical parts by 
deriving a second integral equation which was 
written down graphically in terms of master r-graphs. 

We now derive the master-graph formulation 
for a multicomponent system. Since this formulation 
is really only a prescription for writing down integral 
equations in temperature variables [just as Eqs. (82) 
are integral equations in momentum variables], it 
becomes convenient to formally eliminate the com­
plicated rules for temperature integrations [see Rule 
(vi) of Sec. VJ. This objective is accomplished by 
introducing step functions into the vertex functions 
of (38) and (70) as follows: 

,,( ),. = ( ),.O(tl - to) if one outgoing line, 

1,1,( ),. = ( ),.O(tl - to) O(t2 - to) 

if two outgoing lines, 

',1"'( ),. = ( ),.O(tl - to)O(t2 - to)O(ta - to) 

if three outgoing lines, 

The variables tl , t2 , and ta are the temperature labels 
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at the heads of outgoing wiggly lines from the vertex 
to, and for a solid outgoing line i, t; = {3. When we 
use the vertex functions (91) in a linked-pair s--graph, 
we may extend the range of integration of the tem­
perature variables at all of the vertices to the entire 
interval 0 to (3. For this reason, we assume in what 
follows that the vertex functions (91) are being 
used in linked-pair S--graphs. 

Corresponding to each irreducible linked-pair 
I-graph, we next introduce an L-graph with exactly 
the same structure, but subject to the condition 
that we do not integrate over the temperature 
variable tl at the vertex to which the incoming 
line attaches. These L-graphs are generalizations 
of the "one-particle L-graphs" of Sec. IV. Thus 
if we define 

L I Q t k) '\' (all L-graphs with solid 
a \}J , I , == £..J externallinesl kg, (92) 

then Eq. (82) may be replaced by 

N a(k) = Jla(k>[ 1 + N a(k) { dtILa(ft, tl , k) J. (93) 

The advantage of the L-graphs over the irreducible 
linked-pair I-graphs is that the former permit a 
simple generalization which is useful for generating 
more complicated graphs from simpler graphs. We 
next define L-graphs with one or both of the solid 
external lines replaced by wiggly lines by merely 
specifying the temperature variable t2 at the vertex 
to which the outgoing line is directed if that line 
is wiggly: 

L ( k) '\' (all L-graphs with given 
a t2 , tl , == £..J externallineslk g• (94) 

Equation (94) reduces to Eq. (92) for L-graphs 
with external solid lines. For L-graphs with outgoing 
wiggly lines, we note that we may have t2 < tl as 
well as t2 > t l • 

We next define a quantity P a (t2 , tl , k): 

[

all L-graphs with given ex-] 
ternallines which cannot be 

P a (t2 , tl , k) == L separated into two L-graphs , 
by cutting one wiggly line kg 

(95) 

in terms of which we can write down a simple 
integral equation [see remark below Eq. (88)] 

{ dsGa(t2 ,s,k)PaCs, tl,k), (96) 

where 

Ga (t2, tl , k) == 0(t2 - tl) + Ea L a (t2, tl , k). (97) 

Note that Eqs. (92)-(97) apply to each component 
of a multicomponent system, and that the various 
components are still only coupled together by the 
integral equations (93). Equations (96) and (97) 
are represented graphically in Fig. 2 of II. 

Master graphs are expressed in terms of generalized 
vertex functions, which are defined in terms of the 
vertex functions (91) as follows: 

"( )'0 == i P 

dsISa(tI,SI,k l )"'( )'0 

if one outgoing line: (kl ) a; 

1,"( )., == iP 

dS I ds2 Sa(tl, sl,k\)S/l(t2'S2'k2) .... ( )., 

if two outgoing lines: (k1) a, (k2h; 

.,1.',( )'0 == ill ds! ds2 dsaS,,(tl , SI, k l) 

X Sp(t2, S2, k2)S~(ta, Sa, ka)·'····( )'0 

if three outgoing lines: (kl) a, (k2)/l, (k3)~; 

''''[klk2] - 0(t2 - S\) O(tl - SI) 0., .•• 1 kak4 • .' (98) 

where 

Sa(t, 8, k) == GaU, S, k) + E,,;r(,a(t, k)Ga(ft, 8, k), (99) 

and 

;r(,a(t, k) == N a(k) { ds'G aCt, 8', k). (100) 

The quantity Ga(t, 8, k) is defined by Eq. (97), and 
if an outgoing line at the vertex to is an external line, 
then in Eq. (98) we must make the replacement. 

S,,(t, 8, k) ---+ GaU, 8, k) 

(for an outgoing external line), (101) 

where k is the momentum variable associated with 
the external line. The difference between the second 
and fourth of Eqs. (98) lies in the fact that the 
latter vertex function applies to the case of the 
two-particle interactions (25) which have been 
treated especially by the sum of Eq. (69). Thus, 
the subtracted term in the fourth generalized vertex 
function corresponds to the fact that in linked-pair 
s--graphs there are no wiggly-line double bonds 
between vertices which represent short-range inter­
actions. In the third of Eqs. (98), it will be the case 
for nonrelativistic systems that two of the outgoing 
lines will always be photon lines [see Eqs. (38)]. 
In order to indicate in a graph that vertices represent 
generalized vertex functions, we shall use the usual 
vertex symbols of Figs. 1 and 3 with circles around 
them. Such a symbol will be called a generalized 
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vertex. The definition (98) is illustrated in Fig. 4 for 
the case of two outgoing internal lines with tl ~ t2 • 

A Qth-order master r-graph(r = 0, I, 2, ... ) is 
defined to be a collection of Q generalized vertices 
which are entirely interconnected by m directed 
lines called internal lines, and to which are attached 
r outgoing external lines and r incoming external lines. 
The type of particle represented by the line is 
indicated by a Greek letter (a, {3, ••• ). All of the 
lines in master r-graphs are solid lines, and each 
master r-graph is not reducible. Two master r-graphs 
are different if their topological structures, including 
line directions and particle-type labels, are different. 

To each master r-graph, we assign a term which 
is determined by the following procedures: 

(i) Associate with each internal line a different 
integer i(i = 1, 2, ... , m) and a corresponding 
momentum k i • 

(ii) If r ~ 0, then associate the external lines 
with certain pregiven momenta, such that the 
incoming lines refer to the same set of particles 
as the outgoing lines. External lines with different 
momentum labels are regarded as being distinguish­
able when they leave (or enter) different vertices~ 

(iii) Assign a factor S-l to the entire graph, 
where S is the symmetry number defined below (72). 

(iv) Associate with each generalized vertex a 
temperature variable ti , and assign as a factor a 
corresponding generalized vertex function whose 
"upper temperature variables" are those at the 
vertices to which the outgoing lines from the vertex ti 
are directed. The upper temperature variable for 
an outgoing external line is {3. 

(v) Assign a factor IIa (ePB)a to the graph, 
where (P B) a is the total permutation for the a­
particles of the bottom-row momenta of the Q vertex 
functions with respect to the top-row momenta. 

(vi) Integrate over all of the temperature vari­
ables from 0 to {3, and sum over the m internal 
momentum coordinates (and spin or other internal 
states) according to the particle-type labels of the 
lines. 

A master L-graph is defined to be a master I-graph 
in which (1) the integration over the temperature 
variable tl at the vertex to which the incoming 
external line attaches is not performed; (2) the 
last sentence of Rule (iv) is changed to read: liThe 
upper temperature variable for an outgoing external 
line is t2 ( <{3);" and (3) the external lines may be 
wiggly or solid. 

We can now realize the power of introducing 
the function La (t2 , tl , k), for at this point an integral 

+ 

FIG. 4. The definition of the generalized vertex symbol for 
the case of two incoming lines, and two outgoing internal 
lines with tl ~ t2 ; see Eqs. (98), (99), and (100). 

equation in the temperature variables can be immEY 
diately deduced from Eqs. (94) and (96). 

La(t2 , t l , k) = 1/1 dsGa(t2' s, k) 

X [P ,,(s, tl , k, G) - 8(8 ....,. tl}Sa(k)] 

= L: (all ::=!"!xferu:rt.=thha. (102) 

In the first line of Eq. (102), we have explicitly 
indicated that Pais a functional of all of the G a, 
Gil, G~, ... by the letter G. It should be clear that 
the various components of the multicomponent 
system are now coupled by two sets of integral 
equations; namely, (93) and (102). We have also 
now explicitly included the prescription of Eqs. 
(64) and (52) for the renormaliiation of the one­
particle problem, where SaCk) is defined by Eq. (65). 
In order to verify thatEq. (102) is correct, a straight­
forward procedure is to check that its iterated form 
is equivalent to Eq. (96). 

According to (101) and the first line of (102)-, 
the function P a(s, t, k, G) is the sum over all master 
L-graphs with no external line factors. We now intro­
duce two new quantities L~T) (t2, tl ) and G~T) (t2, t l ), 

which are slight modifications of the functions 
La (t2' tl ) and Ga(t2 , tl). These new functions are 
defined, for {3 > T, as follows: 

L~T)Ct2' tl , k) == iT ds G~T)(t2' S, k) 

X [PaCs, tl,k, G(II» - 8(s - t l )Sa(k)l 

~Lt,f'(t2' t1 ,k) = L .. (t2 , t1 ,k), 

G~T)(t2' t1, k) == 0(t2 - t1) + EaL~T)(t2' t1, k) 

~ Gt,f)(t2, tl , k) = G,,(t2, t1 , k). 
T_II 

(103) 

It is to be emphasized that the definitions (103) 
do not entail any modifications of the internal line 
factors of G in P a(S, tl). The functions (103) occur 
in the expression for the grand potential given 
below. 

Momentum Distribution 

It is clear from Eq. (102) and the definition of 
master L graphs that Eq. (93) for the quantity 



                                                                                                                                    

368 F. MORLING AND W. T. GRANDY, JR. 

FIG. 5. The two basic ring 
structures. Only the first of 
these structures is associated 
with a q-4 singularity. 

N .. (k) may be written as 

N .. (k) = II ,,(k) [1 + N ,,(k) L: (a~_g=~r)]. (104) 

Thus, by means of Eqs. (81) and (104), the mo­
mentum distribution (n,,(k» is given explicitly in 
terms of master 1-graphs. By combining Eqs. (81) 
and (93), one can also show that the momentum 
distribution is equal to the function :>1" «(3, k) of 
Eq. (100): 

:>1,,«(3, k) = (n,,(k». (105) 

Equation (105) shows that the weighting factors 
~ .. (t, k) in master t-graphs are very closely related 
to the true momentum distribution of the system, 
which indicates that the master-graph formulation 
of quantum statistics is a very physical formulation. 

Grand Potential 

The grand potential (83) can also be written in 
the master-graph formulation. A straightforward 
generalization of the derivation given in II for a 
one-component system yields the result 

nf«(3, N '" n) 

L: E" L: In [1 + E,,(n,,(k»] + nF«(3, N '" n) 
" k 

- L: E" L: 1~ dt L,,((3, t, k):>1,,(t, k) - L: L: 
a k 0 a k 

x [P ,,(t2, tl , k) - O(t2 - tl)S,,(k)], 

where 

(106) 

"" (all master) nF«(3, N", n) == £..; O-graphs. • (107) 

In Eq. (106) all quantities are expressed in terms 
of the generalized vertex functions (98), except the 
last term which involves a modified external line 
factor as defined by Eqs. (103). With Eqs. (104) 
and (106), we have achieved the goal of expressing 

both the momentum distribution and the grand 
potential in terms of master graphs. 

vm. COULOMB INTERACTIONS 
AND RING DIAGRAMS 

The preceding sections constitute the main struc­
ture of the formalism required to achieve our major 
objective for any real system; namely, to calculate 
the grand potential via either (71) or (106). How­
ever, the existence of charged particles in a system 
leads to several difficulties in such calculations, the 
first of which was treated carefully in Sec. IV. 
Another major problem in fully ionized gases arises 
from the long-range nature of the Coulomb inter­
action. 

The Ursell equations (17) presume the existence 
of clustering in the many-body system. It might 
seem then that the infinite range of the Coulomb 
force would allow only one large cluster to form 
in a charged-particle system. However, any neutral 
aggregate of particles has only a net short-range 
interaction with other particles, and we see [e.g., 
below Eq. (159)] that clusters with nonzero charge 
can probably always be combined to give finite 
results for systems with zero total charge. 

The momentum-space matrix elements of the 
Coulomb interaction are 

(k~")ki~)1 Vc«(3) Ik;")k~fJ» 

= (21r/n-2o(3)(kl + k3 - k2 - k4) 

X (41rZ"Zpi)om ..... Om ..... q-2 

X exp (3[w,,(k 1) + WP(k3) - w,,(k2) - wp(k4)], (108) 

where 

q = (M" + MfJ)-l[MP(kl - k2) + M ,,(k4 - k3)] 

= kl - k2 • (109) 

The q-2 singularity in (108) is due to the infinite 
range of the Coulomb potential, and it results in 
an apparent divergence of the grand poten.tial. Thus, 
if one considers the ring structure of Fig. 5, then 
one can readily verify that a factor of q-4 occurs in 
part of the corresponding expression. Clearly, the 
iteration of this structure is associated with an 
extremely divergent expression. We call such an 
iterated structure a ring chain. Moreover, it will 
be a basic assumption of our approach that the sum 
over all possible ring chains is not divergent, but 
rather leads to a screened Coulomb interaction. 

Ring Chains 

We now write down two integral equations which 
generate the sum over all possible ring chains 
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corresponding to the two kinds of rings in Fig. 5: 

La. (T)fk1kaI t1S 1
) == ''''(k1ka) o(to - so) 

\kzk. toso kzk. I. 

a8 a8 

1T ""(k 1 ) (1 k I toS) + L: E. L: dt2 k\l LO,(T) 1
2
k

a 
t Sl 

" h,l. 0 22 '0 J 4 20 

a1J 11{3 

--t Le. (~) (k1ka 'I t1
S

1
) == L/k1ka \ t1

S
1

) , 
T~~ \k2k. toso \kzk. toso 

a{3 a{3 (110) 

LE'(T/k1ka \ t1
S

1
) == ""(k1ka) oCto - so) 

\kzk. toso k~4 '. 
a{3 a{3 

1T ""(k 1 ) f lzk Is S ) + EaE~:E dS2 1\r1 LE,(T)\k l
a 

/Sl 
1 d 21 0 zA4 .0 2 1 0 2 

a{3 a{3 

--t LE.(p)(k1ka ! t1S 1
) == LE(k1ka \ t1S 1

) , (111) 
T~~ \k2k. toso \k2k. toso 

a{3 a{3 

where the generalized vertex functions are those 
of Eq. (98) using the Coulomb interaction (108), 
and we require these functions for T ;e {3 as well 
as T = {3. [The use of the Greek letter {3 for both 
(kT) -1 and a particle-type label should not be 
confusing.] It is to be emphasized that each gen­
eralized vertex function in LE corresponds to a 
single matrix element. So long as a ~ {3 there can be 
no confusion about this point; however, this point 
must be remembered when the case a = (3 occurs, 
as in Eqs. (138)-(143). Likewise, it is to be noted 
that, even though the analysis of the present section 
is completely in terms of master graphs, we have 
included all reducible diagrams, in order that these 
equations may also be valid in the linked-pair form­
ulation of Sec. V [provided one uses Eq. (154) for 
the function ga(t2 , tll k)]. The diagrammatic rep­
resentations of these integral equations are given 
in Fig. 6. 

We must next introduce two functions which are 
closely related to Le and L E , namely: 

L (2) (k1k al t1S1 ) 

e.(T)\k2k. toso 
a{3 

= L (kl k a ! tl S l ) - e.(T)\k2k. t080 
1 '''(k k) - kJr: I, oCto - So) 

a{3 a{3 

'. "'X:",-,' '. , 
k4 kZ kz k4 1<.4 kz, 

FIG. 6. The diagrammatic representations of the two integral 
equations (110) and (111). 

L~;2'\T)~::: I ~::) == EaOa~Lb2.\T)~!: I !:~) 
a{3 aa 

[ (klkal tl S1) + (1 - Oap) LE .(Tl\k2k. toso 

a{3 

""<kk) ] - kJr: .. oCto - so) 

a{3 

--t L~2.)(~)fklk31 tlS1) == L~2lfk1kal t1S1). (113) 
T~P \k2k• toso \kzk. toso 

a{3 a{3 

Both Lg) and Vi) are sums over all possible ring 
chains in which (diagrammatically) either k2 is the 
left incoming line [Lgl] or k. is the left incoming line 
[L~lJ. In these functions the single vertex term has 
been explicitly subtracted, because then these func­
tions are suitable elements for the most-general 
ring diagrams discussed below. Note that for L~l 
a distinction must be made between the cases a = {3 
and a ;e (3. We henceforth refer to the four functions 
L e, L E , Lg), and L~2) as eggs. 

Ring Diagrams 
If one appropriately connects combinations of 

the functions Le , LE , Lg), and L~2l in all possible 
ways, then one obtains, among other things, all 
possible ring diagrams. In order to specify the struc­
ture of ring diagrams more precisely, we define a 
contraction procedure to be used for their identi­
fication. Thus, in order to qualify as a ring diagram, 
it must be possible to identify a ring (Fig. 5) when 
all eggs are replaced by generalized vertices (i.e., 
points). Then, when the identified ring is replaced 
by a point, it must be possible to identify another 
ring. The continual contraction of rings to points 
must eventually result in a single generalized vertex. 
We note that in ring diagrams two lines never 
connect the same two ends of two eggs, for such a. 
structure is already included in a single egg. 
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t~~a!'l :'3 
to So 

a{3 

kz kq kz 

$, $, 

t~~ 
x. .• (t"to,k,). ~ 

k, 

FIG. 7. The diagrammatic representations of the three 
functions £o(S), £0.0<, and £0 of Eqs. (120), (116), and (117) 
respectively. Note that the vertex which represents £o(S) is 
associated with two temperature labels. 

The occurrence of the singular ring structure is 
not limited to the simple ring chains of L o, but 
occurs in all possible combinations of the two func­
tions Lo and L E • Thus, it is essential that we have 
a systematic procedure for determining such combi­
nations, and sums over these combinations. It is 
probably unnecessary to carry out a complete 
analysis of the most-general ring diagram in order 
to understand the physics of a real charged-particle 
system by an approximate calculation. However, as 
we show below, it is easy to formally write down 
the sum over all possible ring diagrams, thereby 
facilitating the systematic treatment of the Coulomb 
interactions for any given problem. 

We now define the sum of all possible ring dia­
grams for four possible cases: 

n ~lka ! t181) " [All ways of connecting eggs such] 
""0, (_) 1. t == £... that k. is the Zeit incoming line, 

21'>4 080 
et{3 

~ £0, (,8/k l ka I t181
) == £0 {klkaI t181

) (114) 
--,8 \kJr4 t080 \k2k4 t080' 

et{3 et{3 

(klka \ t181) ,,[All ways of connecting eggs such that] 
£E, Ct') \k:Jr4 t

0
8

0 
== £... k. is the right incoming line and P y6 a 

et{3 

~ £E, (,8) (klka ! t181) == .cE (klka ! t181), (115) 
T-,8 \k2k4 t080 \k:2k4 t080 

et{3 et{3 
" [All wars of connecting eggs such that] 

£O.",(tl, to, k 1) == £..J there IS only one incoming (and one , 
outgoing) external line 

" [All ways of connecting eggs SUCh] 
£0 == £... that there are no external lines , 

(116) 

(117) 

where the single egg is included with both .co .(r) and 
£E,(T)' We also define three functions which are 
closely related to .co ,(T) and .cE ,(T)' 

.c (2) (klka ! t181 ) 
0, (Tl \kJr4 t

080 

et{3 

~ .c~ ?;/l) (klkal t181
) == .c~ sJklkal t I81

). (120) 
T-,8 \kJr4 to8o \k2k4 t080 

et{3 et{3 

The diagrammatic representation of the three func­
tions .c~S), .co ,a, and .co is shown in Fig. 7. These 
functions may be used either in master graphs or 
in linked-pair graphs, in which case we must stipulate 
that no rings (Fig. 5) can occur which involve two 
Coulomb interaction vertices, because the functions 
.c~ 5) 1.-,8, .co ,a, and .co represent all possible ways 
of including such rings. We note that .co ,a is that 
part of La, Eqs. (96) or (102), which is due entirely 
to ring diagrams, and that .co is the ring-diagram 
contribution to the sum over all linked-pair O-graphs, 
or master O-graphs, depending on whether (71) or 
(107) is used. 

We now write down explicit coupled integral 
equations for .co ,(T) and .cE ,(T), equations which 
can be verified by iteration to leading orders as well 
as by careful analysis of the general structure of 
ring diagrams. 
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= Lo (klk3 1 t1S1
) + £g(-;~ (klk3 1 tlSI

) \kJt, toso \k2k4 toso 

a~ a~ 

+ E E1 E 1f1 dS2 1' dt2Lo{ki li I tlt2) 
~ 1,1. 0 0 \k212 tOS2 

afJ 

X [ £ci~(:l(:~: I;:::) + £~2.'<,)(:~: I ;~:) J. (121) 

fJ~ fJ~ 

£E'(')~!: I ~:::) 
a~ 

== L (klk3 1 tlSI ) + £ (L-,{klk3 1 tlSI ) 
E \kJt, toso E • (,) \k2k, t080 

a~ a~ 

~ 1f1 d l'ds L (kill I tlt2) + EaEfI L.J t2 2 E 11p 
1.1. 0 0 !lA4 S~O 

a~ 

X [ .cg:(,)a~: I ~:~:)+£i~(:la~: I ~:~:) J. (122) 

a~ a~ 
where 

afJ 

.c (L_)~lk31 tlSI ) _ n(L-)~lk3\ tlSI ) 
~ E. (fI) 1p t - ""'E k . 
'-fI !lA4 oSO 2 4 toso 

(124) 

a~ a~ 

The diagrammatic representations of the integral 
equations (121)-(124) are given in Figs. 8(a) and 
8(b). 

Self-Energy Ring Diagrams 
We refer to the ring diagrams in £O.a as self-energy 

ring diagrams, because these diagrams, characterized 
by only one incoming external line and one outgoing 
external line, are closely associated with the momen­
tum-space ordering which may occur at very low 
temperatures in a many-body system. (This momen­
tum-space ordering is formally achieved by the 
A transformation of II, which takes one from a 
particle description of the many-body system to 
a quasiparticle description.) 

One must be careful when attempting to write 
down a general expression for £O.a, for the correct 
symmetry numbers are not duplicated by simply 
connecting the (external) ~ lines of £bS

) 1,_11' This 
latter expression gives many of the terms of £o~:. 
more than once and it also overlooks the fact that 
a "double bond" may occur when the ~ lines are 
connected. In order to account for the last possibility, 
we first define a function Ldb as follows: 

Ld/klk3\ tlSI ) 

\kJt4 toso 
a~ 

== (1 - !5afi)E",EII I~ ','O<~~>.o .... <~~:>Io· (125) 

a~ a~ 

We next define a function L o .« by the equation 

Lo.a(tl, to,kl) 

== E E 1f1 dsoL/klkk3\ tt1so) + Lb.a(tl, to, k 1), 
Ii k. 0 \kl 3 oSo ; 

~ 
(126) 

where 



                                                                                                                                    

372 F. MORLING AND W. T. GRANDY, JR. 

k4 

tl t, 

+ 

k4 

where 
I, 

+ 

wher~ 

Then the complete expression for .cC.a is 

.cO.a(tl, to, kl) = Lc.a(tl, to, kl) 

+ L L 113 
d82 dt2Ef!{.cbR-JkI11 I tlt2) 

f! I, 0 \kIll t082 
a{3 

X L L if! d80LO(11k31 8280) + .c~2){klll I tlt2) 
~ k. 0 llk3 t280 \kIll t082 

(31'] a{3 

X LO.fj(82, t2, II) + .co~:!: I ~:!:)M}.fj(82' t2, II)}' 

a{3 
(128) 

It should be clear that 

k4 

1'] 

(a) 

FIG. 8. (a) The diagrammatic 
representations of Eqs. (121) and 
(123). (b) The diagrammatic repre­
sentations of Eqs. (122) and (124). 

(b) 

+ L L ""<klk3) 
f! k. klka I, 

(128a) 

a{3 

in the master-graph formulation, because the 
remaining part of (128) is composed of reducible 
graphs. The function .cbR-) is given by 

.cbR-Jklk31 t181) = L E~ L 113 
d82 1fj dt2 \k2k4 t080 ~ 1,1, 0 0 

a{3 

X .cbS) (kill I tl t2).c~2) (1~31 8281). (129) 
\k2l2 t082 llk4 t280 

a1'] 1']{3 

The diagrammatic representations of Eqs. (126)­
(129) are given in Figs. 9(a) and 9(b). Note that the 
incoming external lines of the functions (126)-(128) 
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+ 

where 

\~a = t I' - 0 '-c 

a 
k, 

f3 

+ + 

where 

all attach at to-vertices, as they should [see above 
Eq. (92)]. 

Closed Ring Diagrams 

We refer to the ring diagrams in .,co, Eq. (117), 
as closed ring diagrams. In order to write down the 
complete expression for .,co, we need the following 
three functions: 

CXTf 

(a) 

FIG. 9. (a) The diagrammatic 
representations of Eqs. (126) and 
(127). (b) The diagrammatic repre­
sentations of Eqs. (128) and (129). 

(b) 

+ .,c~.\r)~:!: I ~:!:) J.,ck2!(r)(!~: I ~:::) 
CXTf Tf~ 

~ .,cci~(~~(klk31 tlS I ) == .,c6--Jklk3\ tlSI ) , 
._~ \kJr4 toBo \k2k4 toBo 

(130) 

cx~ cx~ 
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+ 

+ £ (L_)(kl l 1 \ tlt2)J£(2) (1~a\S2SI) 
E.(.) 1~4 S2S0 c'(<)\k211 tOt2' 

a~ a~ 

£b~~(tl' to, kl) 
== Lb.a(tl , to,kl) + L: L: lfJ ds2dt2EfJ 

fJ h 0 

(131) 

X {£b-_,(kll1 \ tlt2) L: L: lfJ dsoLc(llka\S2So) 
\kIll tOS2 • k. 0 Ilka t2S0 

a~ ~TJ 

(2) (kill I tlt2)L ( 1 ) + £E \kIll tOS2 C.fJ S2, t2, I 
a~ 

+ £(L-,(klll I tlt2)L' (s t I)} 
C \kIll tOS2 C.fJ 2, 2, I , (132) 

a~ 

where £bL
- l and £kL

- l are defined by Eqs. (123) and 
(124), respectively. 

We next define two quantities £6 and £'6: 

£b == -2
1 L: L: lfJ dto 1'0 dso[Lk2'\'Ol~l~al ~~:o) 

a.fJ k,k. 0 0 I 3 0"0 

a~ 

- Ld/klka \ toso)J + 1: L: L: L: lfJ dto dS2 dso \klka toso 2 a.fJ k,k. 1,1, 0 

a~ 

X EO dt2 EaEfJ[ L~l~:!: \ ~:!:)£g.l(lOl(!~: \ ~~:) 
a~ ~a 

+ L/klll Isot2)£tc'>ol(I~3\82to)J \ka12 toS2 Ilk l t2S0 

a~ ~a 

FIG. 10. The diagrammatic repre­
sentations of Eqs. (133) and (134). 

X [Lg l (kill I t2so)£k2.l«Ol (12kal tOS2) 
12ka tOS2 \k l II t~o 
a~ a~ 

+ LE(klll I t2S0)£tC/Ol (12ka\ tOs2)J, 
12ka tOS2 \kIll t2so 

(133) 

a~ a~ 

£~ == 1: L: L: lfJ dto dso L/k1kal toso) 
2 a.fJ k,k. 0 \klka toso 

a~ 

+ -2
1 L:Ea L: lfJ dtldso{Lb.a(so, tl,kl)£c.a(tl,so,kl) 

a k1 0 

+ [ ~ t { dtoLc~~: I ~:~:) J£t~(tl' 80, k1)}. 

~a (134) 

The complete explicit expression for £c is 

(135) 

where in the master-graph formulation of quantum 
statistics 

(135a) 

because the remaining part of £~ js composed of 
reducible graphs. 

The diagrammatic representations of Eqs. (133) 
and (134) are given in Fig. 10. It should be observed 
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that in Eq. (133) we have set r of Eqs. (110)-(131) 
equal to to. By referring to Figs. 8 and 10, we can 
see that it is always possible to specify which 
temperature variables should be integrated only 
from 0 to to. These are the temperature variables 
at the left end of an Lc or an .cc and the right end 
of an LE or an .cE. 

In order to demonstrate that Eqs. (133)-(135) 
give the correct expression for .cc, including the 
correct symmetry numbers, one must make use of 
the following identity: If f(t l, t2, "', tm) is a cyclic 
function in the m temperature variables, then 

1 ltJ ltJ ltJ - dtm dtm - I · . . dtd(tl , t2 , "'. tm ) 
moo 0 

= lfJ 1'" 1'" 1'" o dtm 0 dtm - I 0 dtm-2 • .• a dtl 

X f(t l, t2, "', tm). (136) 

We observe that none of the Lc or LE functions in 
the second two terms of (133), or in Eqs. (121), 
carries a subscript r = to, a fact which should be 
clear from symmetry considerations. 

IX. STUDY OF THE FUNCTIONS Lc AND LE 

In the preceding section, we have set down a 
formalism for the systematic analysis of the effect 
of Coulomb interactions in a many-body system 
with charged particles. We have shown that the 
three principle functions of Fig. 7, i.e., .cbs>, .cc ,a, 
and .cc. can each be calculated entirely in terms of 
the functions Lc and LE defined by Eqs. (110) and 
(111). In this section, we examine these latter two 
functions in detail. 

Each vertex in a ring, Fig. 5, which corresponds 
to two identical particles, is associated with both 
a direct and an exchange interaction matrix element. 
If the particles are not identical, the vertex is 
associated with only one or the other of these matrix 
elements. Thus, the vertices in L E , Eq. (111), are 
all associated with exchange matrix elements (see 
Fig. 6). 

One observes that in a typical ring chain in Lc 
identical particles will occasionally interact at 
vertices along the chain. The product of matrix 
elements corresponding to such a chain may look like 

(Dafj)(DfJ~)(Dq~ + E~~)(Dn + E~q) 
X (D~r)(Dq~)(Dti + Err) .. , , 

where Daa and Eaa are, respectively, direct and 
exchange matrix elements for a particles. Therefore, 
each chain in Lc can essentially be written as a sum 
of identical ring chains, but with different matrix 

elements at some of the vertices. We see that it 
is possible to have chains of all direct matrix ele­
ments, chains of all exchange matrix elements, and 
chains of all possible combinations of the two. 

We begin this section by separating the contri­
butions from the direct and exchange matrix ele­
ments in L c , Eq. (110). To this end we first define 
the function LD by an integral equation involving 
only direct matrix elements [indicated by a super­
script (d)] 

LD, (d (klkal tlSI) == ""<klka)(d} ~(to - so) 
\Jr2k4 toso k~4 '. 
a~ a~ 

l ' ''''(k 1 )(d) + L: E~ L: dt2 k\1 
~ 1,1. 0 2 2 to 

a7J 

~ LD.(fJ}(klkal tlSI) == L/k!kal tISI). 
,_fj \Jr~4 toso \Jr~ toso 

(137) 

a~ a~ 

We next define two functions GDE and GED by 
integral equations, 

GDE.(,)~::: I ~:) == LDE.(,}~::: I ~:::) 
a~ a~ 

+ L:E~ L:l' dt2dS2LDE'(T/klllll ttlt2) 
q 1,1. a \k2 2 OS2 

a7J 

X GDE.(,)(~::: I ~:::), (138) 

7J~ 

G (klkal tlSI) = L (klkal tlSI) 
ED.(T)\Jr~ toso - ED.(d\Jr~ toso 

a~ ~ 

+ L: E~ L: l' dt2 ds2 LED. (,/kll11 I (tlt2) 
~ 1,1. 0 \Jr2 2 OS2 

a7J 

(139) 

where 
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We note that one must use only direct matrix 
elements in the expressions for LE to be used in Eqs. 
(140) and (141), because exchange has already been 
explicitly included by the notation of Eq. (111). 

It is now possible to write down a detailed equation 
for Lo in terms of Ln and LE, 

LO'(T)~:~ 1 ~;:J = Ln.(r)~!: I!:::) 
a~ a~ 

+ E"o,,~LE'(T)(:::: I ::~:) + GO'(T)~::: I ~::), (142) 

aa a~ 

where 

GO'(T)~!: \ ~::J = GDE.(T)~!: I ~::J 
a~ a~ 

+ GED'(T)~::: I ~J + ~ E. I~ f dta ck2 

a~ 

X LD'(T)~:!: I ~:::)GED'(T)(!!: I :J 
aT] T]~ 

'" iT (kIll I tlt2)G (12kal s2sl) + I~ 0 dI2 ds2 L E .(T) 12k2 S2tO DE,(T) lIk4 t2S0 ' 

aa a~ 

(143) 

Equation (142) for Lo can easily be verified by 
observing that it includes all possible ways of alter­
nating direct and exchange matrix elements. 

We have now shown that the principle vertex 
functions £~S), £0,,,, and £0 can each be calculated 
entirely in terms of the functions Ln and LEI defined 
by Eqs. (137) and (111), respectively. We show 
below that it is the function LD which includes the 
extremely singular terms discussed below Eq. (109). 
Moreover, the leading contributions (in powers of e) 
to the principle vertex functions arise from the 
LD terms in Lo and L12

). We therefore next write 
the first approximations to these functions. From 
Eqs. (119)-(122), we have for £68

) 

£~ s) (klka\ tIS!) :::::: L/klkal tISI) 
\k2k4 toso \kak4 loso 
a~ a~ 

(144) 

aa 

From Eqs. (126)-(128) and (113), we have for £0, .. 

£o,,,(tt, to, k I )::: L: L i~ dso[L/klkak I ttISO) 
~ k. 0 \kl a oSo 

a~ 

+ 1> L elkal IISo)] E"U"1l D k t ' 3 1 So 0 
(145) 

aa 

where in the master-graph formulation this approxi­
mation becomes 

(145a) 

Finally, Eqs. (133)-(135) give for the first approxi­
mation to £0 

(146) 

which becomes in the master-graph formulation 

1 ill [,o'o<k k )(d) 
£0 ~ - L L dto 1 3 

- 2 ",fJ k,k. 0 klka t. 

a~ 

(146a) 

We next investigate the three functions Ln, LEI 
and Ldb [Eq. (125)] in greater detail by using the 
explicit expression (108) for the Coulomb-interaction 
matrix element. From Eqs. (137), (98), (91), and 
(38), we have for Ln 

LD'(T)~~ I ~::) 
a~ 

-(21!"tn-2 o(al(k1 + k3 - k2 - k4)om,m.O ....... 

X ~:~~~~ E"Ep i~ dli dsi9,,(tl' ti, k 1)9,s(Sl' sL ka) 
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x o(tr - to)O(sr - so) exp to[wa(k1) - wa(k2)] 

X LD.«l(q I toSo) exp so[wika) - oo/I(k4)], (147) 

where 

Ln.(T)(q I toso) = oCto - so) - t E E~(2S1 + 1) 
~ 

X !Mt21 W, 12 - q) !Mtol s{' 1 12)0(ti' - to)O(sr' - t2) 

X {exp(to - t2)[wi12-q)-w1(l2)]}LD,(T)(q]t#0). 
(148) 

Similarly, Eq. (111) for LE can be written as 

LE,(T)~::: I ~::) 
a/J 

-(211"tO-2 c5(3l(kl + ka - k2 - k 4)0 .. 'm.c5 ...... 

X Z2",~~2 EaE/I 1/1 dti dS~g,,(tll tL k1)gisll si, ka) 
11" q 0 

X O(t{ - so)O(s~ - to) exp so[oo" (k1) - oop(k4 )] 

X LE,(T)(kll q, K I toso),,{J exp to[oo/I(ka) - w",(k2)] , 

(149) 
where K = kl - k4' and 

LE,(T)(kl, q, K I toso)",p = oCto - so) 

- !(Z"Z{Jflj1l"2) f d312 { dS2 1'J dW ds{' 

X g/l(S2' W, 12 - K)g,,(so, sr', 12 ) 

X 6(W - So)6(8~' - s2)(12 - k1)-2(12 - kl + qf2q2 

X exp (So - S2)[oo/I(12 - K) - W,,(l2)] 

X L E ,(<)(121 12 + q - kll K I toS2) ,,11' (150) 

Finally, we may write for Ldb, Eq. (125), 

Ld/k1kaj tIS1) 

\k2k4 toso 
et{3 

= (1 - !o"p)(211")60-20(3)(kl + k3 - k2 - k4)E"Ep 

X (Z;;r2y f d312 f dt: ds: dW ds{'g,,(t1 , ti, k 1) 

X O(ti - sO)gp(Sl' si, ka)8(s{ - to) 

X g/3(to, ti', 12 - K)8(tf! - So) 

X g,,(sol si', 12)8(s{' - to) 

X exp so[w,,(k1) - wP(k4 )] 

X exp (So - to)[w{J(12 - K) - W,,(l2)] 

X exp to[wp(ka) - w,,(k2)] 

X {o .. ,,,,.o,,, ..... (h - k 1)-2(12 - kl + q)-2 

+ 0"po"', .... 0 ...... K-
2
[(2Sa + I)K-

2 

+ E,,(I2 - k1r 2 + E,,(12 - kl + q)-2]}. (151) 

In the application of the above explicit expressions, 
one must observe that q = 0 in the integrands 
of £e,,, and £e. As we shall see, however, LD is well 
defined at q = O. Moreover, the leading tenn of LE 
has already been included in the second tenns of 
(144)-(146). Thus, one is led to examine q-2 times 
the second tenn in the iteration of (150). One sees 
that at q = 0, there is a singularity in the integrand 
at 12 = k 1 • One then finds that this singularity is 
precisely cancelled by corresponding singularities 
in Ldb when these tenns are substituted into Eqs. 
(127) or (133). Singularities at q = 0 in the higher­
order terms of LE have not yet been examined. 

Applications; High-Temperature, Low-Density Limit 

The value of any theory, of course, is in the new 
results to which it can lead. Detailed application 
of the above equations to any real system in a par­
ticular temperature-<iensity range is fairly lengthy, 
but it is in order to briefly mention some of the 
problems to which the foregoing theory can readily 
be applied. In the general ionized gas one must 
consider as constituents electrons, ions (in different 
stages of ionization), neutral atoms, and photons. 
[As we have seen, if other types of nonconserved 
particles are important in a system they are easily 
included in the above formalism, and external fields 
have formally been included in Eq. (23).18] The 
major difficulties arising from the Coulomb inter­
actions among ions and electrons have been treated 
above, and the lowest-order contribution from the 
nonring interaction of charged particles is probably 
of order e6

• Nonring diagrams are contained in the 
function F(f3, N «, 0) of Eq. (lO7). 

In the consideration of a partially ionized gas 
one must examine the contribution to the thermo­
dynamic quantities from the internal states of ions 
and atoms. As noted previously, sums over internal 
states are included implicitly in the fonnalism, but 
several subtle questions relating to the calculation 
of these bound-state contributions remain to be 
answered. There is reason to believe that some 
of these questions are intimately related to the 
calculation of nonring diagrams, so that this "bound­
state problem" is one of those under present investi­
gation. One result of subsequent studies via our 
formalism will be corrections to the Saha equation, 
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In Sec. IV we have paved the way for including 
radiative corrections to all diagrams involving 
charged particles, which is a necessary step toward 
including all possible effects due to photon inter­
actions in the ionized gas. One should observe, 
also, that other photon-charged particle interactions 
are included in Eqs. (71) and (106), besides those 
of Sec. IV. The systematic study of these terms, 
along with a study of the photon momentum distri­
bution, is an important investigation which should 
be undertaken as soon as possible. Completion of 
such a study should, for example, lend insight into 
higher-order corrections to Planck's law. 

Finally, there are two limiting cases which are 
of immediate interest. The low-temperature, high­
density electron gas has been studied previously, 
resulting in the expression of Gell-Mann and 
Brueckner.34 The present formalism can be used 
along the lines of II to study this limit further, 
and an extension in this direction would be very 
desirable. In the opposite limit of high temperature 
and low density, one encounters the case of fully 
ionized gases. Others have previously calculated the 
lowest-order contributions to the grand potential 
in this limit, but we calculate it again both to 
illustrate the use of the preceding equations and 
to demonstrate the reduction of our expressions to 
a known result. In this limit we not only restrict 
contributions to those from ring diagrams, but also 
we approximate the sum over all ring diagrams by 
Eq. (146). This implies that we ignore complications 
such as internal states and photons. 

One may approximately solve the integral equation 
(148) for Ln in the high-temperature, low-density 
limit. The criteria which we adopt for this limit 
is that 

A .. « l .. « A(D), (152) 

where A" is the thermal wave length, Eq. (16), for 
a particles, l" is related to the density p" of a 
particles by p" = l:3, and A(D) is the Debye length 
defined by 

Am) = (47re2i3 L: p"Z!)-t. (153) 
" 

We use the linked-pair formulation (Sec. V) of 
quantum statistics, rather than the master-graph 
formulation, in this limit. This is equivalent to 
writing the functions 9" in Eq. (148) as 

9,,(t2, t1, k) = 5(t2 - t1) + E"v,,(k)5(13 - tl)' (154) 

We may then approximate 9" in the region (152) by 
34 M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 

364 (1957). 

9,,(t2, t1, k) "" 5(t2 - t1) + E" 71,,5(13 - tl) 

X exp [-/3w,,(k)] , 

because in this limit. 

3" == exp (l3g,,) ~ (2S" + 1rlp"A~ 

(154a) 

X {I - !(3(Z ",e?A(~) I « 1 , (155) 

as we show below. 
With the aid of the approximations (152) and 

(l54a), one can show that Eq. (148) can be written as 

Ln.(T)(q I toso) 

~ 5(to - 80) - 7r L: (2S~ + 1) 71~A;3(2Z,e/ q)' 

X { dt, Ln.(T)(q I t2S0). (156) 

In deriving Eq. (156), we have used the fact 
that [Ln - 5(to - 80)] is appreciable only when 
q $ A(~), a result which follows from the solution 
to (156), 

Ln. (T) (q I toso) = 5(to - 80) 

- 13-16'(7' - so)[(7'/13) + (qA~D»2], (157) 

where 6'(t - 8) differs from the step functions 
introduced in Sec. IV by requiring that it be unity 
when t = s, and 

A~D) = [47re2
{3 L: (2S .. + 1) 3"Z~A';;3r;~ Am). (158) 

" 
With Eq. (157), we have demonstrated that in the 
region (152) Ln is not divergent at q = O. Moreover, 
the Debye length Am) can beidentifiedasthescreening 
length for the Coulomb interaction in any charged 
particle many-body system characterized by (152), 
[see discussion following (109)]. This latter statement 
becomes clearer when one substitutes Eqs. (147) 
and (157) into Eq. (145) for £0.". The result is 

£0.,,(t1, to, k 1) 

~ -E",Z",{O(tl - to) + E"3,, exp [-(3w,,(k1)]} 

X ~ (2SIl + 1) ;;~2 31l J d3ka exp [-(3wll(ka)] 

i ll z2e2ill 
X 0 dSO[q-2 Ln(q I toSo)]._o - E" 2;2 0 dso 

X {O(ll - So) + E" 3" exp [-.Bw,,(kl)]} 

X J d3ka exp (so - to)[w",(k1) - w,,(k3)] {O(so - to) 

+ Ea 3" exp [-.Bw a (ka)]}K-2Ln(K I Solo) 
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1" 1"" + 2(trfj)-l E .. (Z"e)2 dao dK[1 + (KXCD»~-l 
10 0 

X exp [-(80 - to)cd .. (K)] - 23 .. (Z .. e)2X:18(tl - to) 

where XrD) is defined by Eq. (158). According to 
Eqs. (71) and (77), an approximate expression for the 
grand potential in the region (152) is then 

f ~ L: (28 .. + 1) 3 .. X:3 + lr\Cc • (161) 
" 

~ 2tr{3XCD)EaZ.l8(t1 - to) L: PIiZ~ 
Ii 

+ E,,(Zae)2X(~)8(t1 - to)(t - to)/{3, 

Equation (155) can now be verified by substituting 
(161) into Eq. (7). Finally, we may use Eq. (6) to 

(159) derive for the pressure of an ionized gas 

where we have used Eq. (155) in the second set of 
terms, and the fact that x'"PaZ" = 0 for a neutral 
system. According to Fig. 7, one may interpret £c ... 
as an "effective" single-particle potential energy, 
and therefore, the above result shows that this 
effective energy is ,....." e2jX(D) in the region (152). 

One may finally evaluate Eq. (146) in the high­
temperature, low-density limit. The result is 

0-1
£0 ~ [12tr(h~D»3rl, (160) 

which is the well-known result of Debye and 
Hucke1.3G 
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We present a method of treating the assembly of interacting bosons under Bose-Einstein conden­
sation. Without applying the Bogoliubov approximation in which the creation and the annihilation 
operators of zero-momentum particles are replaced by a c number, we keep the quantum nature of 
these operators-thus the title, "Quantum Mechanics." The method is a quantum mechanical adap­
tation of the theory of small oscillation. The oscillation means the fluctuation of the number of con­
densed particles. The interaction between particles determines the stability of this oscillation. When 
it is stable and its amplitude is not macroscopic, the Bogoliubov approximation is valid. In this way, 
our method provides a validity criterion for the Bogoliubov approximation as well as an estimation 
of the errors thereby committed. We have to note that the excitations associated with the fluctuation 
of condensed particles can never be obtained within that approximation. Our method is applied to 
the Huang model, the assembly of bosons interacting through a hard core plus weak attractive po­
tential. Having found that, within the physically accessible range of the particle density, the above­
mentioned oscillation is stable, we can conclude that Huang's treatment is well founded. We have 
discussed the mathematical background of our approximation by invoking the representation theory 
of canonical variables of an infinitely large system. 

I. INTRODUCTION 

WHEN we consider the many-body problem of 
bosons, the standard procedure is to apply 

the Bogoliubov method of approximation/· 2
•
3 in 

which, taking advantage of the macroscopic occupa­
tion of the lowest single-particle level, we replace the 
corresponding creation and annihilation operators, 
a~ and ao, by a c number N~, the square root of the oc­
cupation number of the level. 

It is very long since the approximation was inven­
ted and the method has been applied to various 
problems yielding physically reasonable results.4

•
5 

However, as Yang and Huang noticed in their 
paper,3

.4 the approximation has been justified merely 
by the consistency of the procedure and the con­
sistency does not necessarily mean the correctness. 
In particular, there has not been known any method 
for estimating the errors committed. Recently, 
Foldy and Bassichis6 have examined a soluble model 

* This work was supported in part by National Science 
Foundation under NSF GP 1193 and the U. S. Air Force 
Office of Scientific Research under AFOSR 500-64. 

t On leave of absence from the University of Tokyo, 
Tokyo, Japan. Address from 1 February 1965: Department 
of Physics, University of Illinois, Urbana, Illinois. 

1 N. N. Bogoliubov, J. Phys. (USSR) 11, 23 (1947). 
2 T. D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106, 

1135 (1957). 
3 A lucid discussion is found in C. N. Yang, The M any­

Body Problem (Centro BraziIeiro de Pesquisas Fisicas, Rio de 
Janeiro, 1960). 

4 K. Huang, Phys. Rev. 115, 765 (1959). As for the 
discussion on the validity of the approximation, see Sec. V 
of this paper. 

6 K. Huang, Phys. Rev. 119, 1129 (1960). 
6 W. H. Bassichis and L. L. Foldy, Phys. Rev. 133, A935 

(1964). 

of one-dimensional Bose gas to show that, under 
some circumstances, the macroscopic occupation of 
the lowest single-particle level is destroyed by the 
interaction between particles thus invalidating the 
Bogoliubov approximation. It is now urgent to 
establish some validity criterions for the approxima­
tion. 

In the work of Bogoliubov and also in those of 
the others, the c-number replacement of the creation 
and annihilation operators was motivated by a 
physical intuition. In this paper, however, we are 
going to pave the way to the Bogoliubov approxima­
tion by the orthodox machineries of quantum 
mechanics throughout. The operators, a~ and ao, 
will not be replaced by a c number but by Ng + a~t 
and Ng + a~, respectively, which are in fact operators 
obeying the canonical commutation relations; we 
require, say, [a~, a~t] = 1 so that [Ng + a~, 
N~ + a~t] = 1. Needless to say, these replacements 
do not involve any approximation at all. 

Then, our method of approximation is to construct 
a quantum analog of the method of small oscillation 
in the classical mechanics. In the above replacements, 
N~ stands for the equilibrium position around which 
the many-body system undergoes the small fluctua­
tion to be described by a~t and a~. The approxima­
tion consists in expanding the Hamiltonian in 
powers of a~t and a~. The mode of the fluctuation is 
determined by the interaction between particles. 
Sometimes, the fluctuation turns out to be of a 
harmonic-oscillator type with amplitude much 
smaller than N~, when the Bogoliubov approxima-
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tion is valid. But, depending upon the interaction, 
the fluctuation can be unstable so that the ampli­
tude grows larger and larger to compensate the 
background occupation No. In this case, the assump­
tion of the macroscopic occupation is not valid and 
the Bogoliubov approximation fails. In this way, we 
obtain the validity criterion for the approximation 
in terms of the interaction between particles. The 
elTors induced by the approximation can also be 
estimated. 

Two interesting features appear when we consider 
the limit of infinitely large system. First, some of 
the terms in the expanded Hamiltonian become 
exactly negligible under the condition that the 
fluctuation be not macroscopic. Second, we come 
across the theory of inequivalent representations of 
the canonical commutation relations? to see the 
above replacement is imperative if we want to deal 
with an iITeducible representation. In fact, when the 
occupation number No is finite, the above replace­
ment, ao -+ Ng + a~, etc., can be effected by an 
unitary transformation. But, in the limit No -+ <XI, 

such a transformation does not exist at all and we 
have to construct a new representation suitable 
for the infinite system. At least in the case of free 
bosons, the requirement is met when we use the 
well-known Fock representation for a~t and a~ 
after the replacement. We shall see that some inter­
esting questions arise concerning the conservation of 
particle number as well as the states with sharp 
particle number. 

Now, in Sec. 2, the basic ideas will be explained. 
There, the model used for the illustration is the 
assembly of free bosons. In the sections thereafter, 
we shall take up the example of Huang model4 in 
which the particles interact through a long-range 
attractive force with a hard core. For the sake of easy 
reference, we shall recapitulate the definition of the 
model in Sec. 3. Then, in Sec. 4 the" Hamiltonian" 
(the Hamiltonian with the chemical potential times 
the number operator subtracted) will be expanded 
according to the method of the small oscillation and 
the orders of magnitudes of each component will be 
estimated. In Sec. 5, the diagonalization of the 
"Hamiltonian" is calTied out in the lowest-order 
approximation, in which we have to deal only with 
the particles of momenta larger than some critical 
value ko (ljko is the range of the attractive potential). 
These sections, 3, 4, and 5, constitute a preparatory 
step for the further developments. In these sections, 

7 L. GlI.rding and A. S. Wightman, Proc. Natl. Acad. Sci. 
U. S. 40, 622 (1954); A. S. Wightman and S. S. Schweber, 
Phys. Rev. 98, 812 (1955). 

we claim nothing new except for the use of the 
chemical potential which is absolutely necessary 
for the adaptation of the method of small oscillation. 
But, it would be interesting to see how the chemical 
potential works and how our method compares 
with Huang's. 

In Sec. 6, we reach the position to treat the fluctua­
tion described by the operators a~t and a~. The 
stability condition will be written down in terms of 
the parameters of the interparticle potential. This 
condition is called the k = O-stability condition. 
We find that the fluctuation cannot be stable if the 
attractive force is too strong. In the same spirit we 
treat the particles of momenta k, 0 < Ikl < ko, in 
Sec. 7. Here, we obtain another stability condition 
which we call the srI O-stability condition. This 
condition is found to be equivalent to the statement 
that the sound velocity of the system be real. 

On the basis of these calculations, we discuss the 
properties of the Huang system in Sec. 8. As stressed 
by Huang, the system possesses the equilibrium 
density PL at which the energy is minimum. As far 
as the system is at temperature zero, the system 
cannot be brought into the state of density p < PL: 

If we try to expand the container, we shall see the 
system lump like a liquid drop (the neglect of the 
surface energy will be justified for a sufficiently large 
system). One of the most interesting conclusions of 
this paper is that both the k = 0- and the srI-
stability conditions are satisfied by the Huang 
system with the physically accessible density p ~ PL: 

In this sense, the use of the Bogoliubov approxima­
tion is completely justified for the Huang system at 
absolute-zero temperature. 

What happens in the higher temperature is an 
open question. We believe that the same approxima­
tion scheme can be used without any difficulty to 
investigate the lower excited states. The stability 
conditions will be the most interesting subjects. 
From the point of view of the representation theory 
of the canonical commutation relations, however, 
the occurrence of many series of energy spectrum 
will be the most remarkable, because each series 
is found to belong to one of the many mutually 
inequivalent representationss of canonical commuta­
tion relations. The inequivalence accounts for the 
orthogonality between the states belonging to dif­
ferent series of the energy spectrum. Since we have 
invoked the chemical potential and its value can be 
different depending on which state is concerned, the 
orthogonality is not guaranteed in such an ordinary 

8 Each of them is labeled by the density No/V of the 
particles in the Bose-Einstein condensation. 
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way that the eigenvectors of one and the same Hermi­
tian operator are orthogonal. 

In Section 9, we discuss the mathematical back­
ground of our approximation scheme by generalizing 
the arguments given by Araki and Woods9 for the 
case of the free Bose gas. We want to show that the 
replacement ao ~ Ng + a~ is an inevitable conse­
quence of our presumption of the Bose-Einstein 
condensation if the system is infinitely large. In order 
to prove this statement in its most general form, we 
have to compute the Wightman functional without 
any assumption but for the condensation. But, for 
the sake of a clear presentation, we shall be satisfied 
with treating some oversimplified models. We still 
believe that these models will be sufficient to indicate 
the realistic situation and then to show the necessity 
of the replacement. The point we emphasize here is 
the c-number addition as represented by N~ in the 
above. The more elaborate discussion will be given 
elsewhere. 

The concluding remarks are given in Sec. 10. 
In Appendix I, we collect some useful formulas of 

the Bogoliubov transformation. In Appendix II, we 
compute the fluctuation of the particle number in 
the condensed state, on the basis of which the mathe­
matical models in Sec. 9 will be constructed. Appen­
dix III gives a derivation of the mathematical 
formula used in Sec. 9 together with its generalization. 

n. BASIC IDEAS 

Throughout this paper, we consider an assembly 
of Bose particles in a state of Bose-Einstein conden­
sation. The Hamiltonian :re of the system can be 
represented in terms of the creation and the annihila­
tion operators, a: and ak for the bosons of momen­
tumk: 

k = (2'II/Vl)(nz , ny, n.), 

nz = 0, ±1, ... , etc., (2.1) 

where V is the volume of a cubic box containing the 
system. 

In treating such a system, the nowadays standard 
procedure is to apply the approximation method 
developed by Bogoliubov/ Lee, Huang, and Yang2

: 

By taking advantage of the fact that the individual 
particle level with zero momentum (hereafter, we 
call it the k = O-level) is occupied by a macroscopic 
number of particles we replace the corresponding 
operators, a~ and ao, by a c number, 

(2.2) 

where No is the occupation number of the k = 0-
9 H. Araki and E. J. Woods, J. Math. Phys. 4, 637 (1963). 

level in the unperturbed state and "macroscopic" 
means that No is proportional to the size V of the 
system, No = PoV. In fact the matrix elements of 
operators are such that (No±l)i=N&+O(l/Ng) 
and the approximation has been quite successful.'·6 

However, it is unsatisfactory that the fluctuation 
in number of the k = O-particles is neglected when 
the replacement (2.2) is done. The fluctuation is not 
necessarily of quantum origin but can be caused by 
the interaction between the k = 0- and k :F 0-
particles.lo 

Such a fluctuation due to interaction can partly 
be taken into account by adopting an additional 
prescription for the operators quadratic in a~ and/or 

(2.3) 

as has been done by Lee, Huang and Yang.2 Since, 
as will be shown later, the fluctuation effect caused 
by the interaction linear in a~ or ao, say 

(2.4) 

in a well-known notation, is negligible under certain 
circumstances, the above procedure may seem fairly 
reasonable. 

The question we want to ask concerns the sta­
bility of the assumed Bose-Einstein condensation, 
which cannot be examined within the approximation 
(2.2). It is true that this approximation scheme leads 
us to a consistent theory,' but we cannot still ex­
clude the possibility that the interaction would 
violate the condensation to smear out the particle 
distribution in momentum space in contradiction 
to the starting assumption. 

Method of Small Oscillation 
In order to discuss the stability, we can use the 

method of small oscillation around an equilibrium 
position. Instead of the replacement (2.2), we make a 
change of variablesll : 

ao = NZ + a~, (2.5) 

where a~ is a new annihilation operator intended for 
the description of the small oscillation. By requiring 
a~ and its adjoint at to satisfy the canonical com­
mutation relations, 

[ F Ft] ao,ao = 1, 

[ F F] [Ft Ft] ao, ao = ao • ao = 0, 
(2.6) 

10 By k = a-particles we mean the particles with k = a 
and by k ~ a-particles those with k ~ a. 

11 In the elementary particle physics, this kind of trans­
formation was first introduced by S. Kamefuchi and H. 
Umezawa, Nuovo Cimento 31, 429 (1964). 
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we make ao and a~ also a canonical pair of operators, 
thus achieving an improvement over the replace­
ment (2.2). The more important point is that, while 
the shift of equilibrium point Ng is macroscopic, we 
expect the matrix elements of a~ not to be propor­
tional to the size of the system V. In other words, we 
develop an approximation scheme under the assump­
tion that the amplitude of the small oscillation be 
remaining finite and small even when the system 
becomes infinitely large, V --+ co. 

Then, according to the usual method of small 
oscillation, we can expand the Hamiltonian in powers 
of a~ and neglect the terms of higher powers than 
the second to compute the eigenfrequency of the 
a~ oscillation. To be emphasized is that, as will be 
seen later, some terms in the expansion are exactly 
negligible in the limit V --+ co. The stability of the 
oscillation and therefore of the Bose-Einstein con­
densation can be judged in the following way: If the 
frequency of the a~ oscillation comes out to be real , 
then the condensation is stable against the dis­
turbance caused by the interaction with the k ~ 0-
particles. If the frequency becomes imaginary, then 
it is unstable and the matrix elements of a~ will not 
remain finite to prove the replacements, Eqs. (2.2) 
and (2.5), inadequate for that system. 

In the case of stable condensation, the total density 
of particles will be computed as a function of the 
density of k = O-particles, Po = No/V. When the 
total density is given by an experimental setting, 
the inversion of this relation determines the equi­
librium point NZ. 

Chemical Potential 

If one would hesitate to adopt the change of 
variables (2.5), it might be because the change 
violates the conservation of particle number m = 
Lk a:ak which is inherent in the many-body Hamil­
tonian. In order to take care of the conservation , 
we have to invoke the chemical potential J.!. 

What happens will be most clearly seen when we 
take up an example of the Hamiltonian of relativistic 
free Bose gas, 3C = Lk wka:ak with Wk = (k2 + m2)t. 
Instead of the Hamiltonian itself, we have to deal 
with the operator X = 3C - J.!m in the new repre­
sentation where ao and a~ are replaced according 
to Eq. (2.5). The operator to be diagonalized is then 

X = (m - J.!)[a:ta~ + N~(a:t + a~) + No] 

+ L (Wk - J.!)a:ak. (2.7) 
k;o<O 

The only question is how to eliminate the terms 
linear in a~ and ar. If one tries to do this by such a 

displacement of origin as a~ --+ a~ + A with some 
c-number A, then the result is to come back to the 
original operator ao. Therefore one must choose the 
chemical potential to be 

J.!= m, (2.8) 

and the remaining operator becomes obviously 
diagonal in the usual occupation-number representa­
tion. When the total number of particles is given by 
a c-number N, the energy of the system X + J.!N 
turns out to be 

E = L (Wk - m)a:ak + mN. (2.9) 
k,..O 

This result is easy to understand, because the second 
term represents the excitation energy. Since for the 
ground-state energy Eo = mN we have 

aEo/aN = J.!, (2.10) 

we know that our way of determining the chemical 
potential is equivalent to the usual one. This will 
be seen to hold also for the interacting bosons. 

In the later discussion of interacting bosons, also, 
we shall invoke the chemical potential to eliminate 
the unwanted terms linear in a~ and a: t

• 

The State with Sharp Particle Number 

We are now prepared for applying our approxima­
tion scheme to any many-boson system in which 
Bose-Einstein condensation takes place. The sta­
bility of the condensation serves as the validity 
criterion for our approximation. Yet, one may wonder 
if the above procedure of diagonalizing 3C - J.!m = X 
is in fact equivalent to the diagonalization of 3C 
itself with the particle-number conservation ex­
plicitly taken into account. To answer this question 
we shall show a way to construct the simultaneous 
eigenvector of 3C and m. This method has once been 
presented for fermion case12 by the present author. 

For the purpose of illustrating this method, the 
model of free bosons is not so suitable because the 
operator X with J.! put equal to m contains no a~ nor 
a: t thus having no preference for any state of" a~­
quasiparticles"; the eigenvector of X is indeterminate 
to this extent. Here, remembering the assumption 
of small oscillation, we assume the vacuum In) of a~ 
and ~ (k ~ 0) to be the "eigenvector" of X, (the 
true vacuum): (n I n) = 1 and 

X In) = 0; a~ In) = 0, ak In) = 0 (k ~ 0). (2.11) 

We know that the number of physical particles 
should be counted by m = Lk a:ak, the vacuum of 

13 H. Ezawa, J. Math. Phys. 5, 1078 (1964). 
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which shall be denoted by 10): 

ao 10) = 0, {O I 0) = 1. (2.12) 

Now, the first step is initiated by an important 
observation: The conservation of particle number 
implies the invariance of the Hamiltonian under the 
phase transformation, ak ~ akei" and ak

t ~ a:e- i". 
Then, imagine we have employed the transformed 
operators from the beginning. The Hamiltonian 
and also the operator X takes the same forms as 
before. But, the change of variables we make will be 

(2.13) 

If the old replacement (2.5) provides us with an use­
ful approximation scheme, the new one (2.13) must 
work as well yielding the same value for the approxi­
mate eigenvalue of X. In fact, in the case of the 
free bosons, we can see immediately that this is true. 
As will be seen in the following sections, it is true 
also for interacting bosons: After the change of 
variables [(2.5) or (2.13)] has been done, the apparent 
forms of X's, the old and the new, may be different 
from each other (as it is actually the case for inter­
acting bosons), but their eigenvalues will be found to 
coincide. The operator X written in terms of the new 
variable a~ei" will be denoted by X". 

The second step is to notice that the change of 
variables (2.13) can be looked upon as an unitary 
transformation within the representation space of ao 
and a~. In fact, 

where 

aFoei a ia t = 'U"aoe 'U", 

'U - [N!( ia t -I,,)] a = exp - 0 aoe - aoe . 

(2.14) 

(2.15) 

Then, the true vacuum of Xa is related to the vacuum 
of ao as 

In,,) = 'U a 10), (2.16) 

the suffix a being supplied to the vector In) in Eq. 
(2.9). As has been anticipated, the true vacuum 
Ina) is a superposition of the states with different 
occupation numbers. 

In the actual case of the interacting bosons, the 
construction of the true vacuum is not so simple as 
in the above example. After the change of variables, 
the operator X" will depend on a~ and at so that 
some further transformation will be necessary to 
diagonalize it. Anyhow, the true vacuum can be 
related to the free vacuum 10) by the operator, 
akeia and a:e- i

" [see, for example Eq. (5.8)]. 
We are now in the position to construct the simul­

taneous eigenvectors of JC and ;Jr. The key is to make 

the following observations: Since the vectors, Inss 
(0 :::; a :::; 211"), are the respective eigenvectors of 
x/s with one and the same eigenvalue and the 
operators X" are expected to approximate JC - J.L;Jr 

equally well under the condition of the Bose-Einstein 
condensation, any superposition of In,,)'s must be as 
good approximation to the eigenvector of JC - J.L;Jr 

as each Ina) is. 13 Then, we construct a special super­
position, 

(2.17) 

which is by nature an eigenvector of the number 
operator ;Jr, and therefore the simultaneous eigen­
vector of JC and ;Jr. This concludes our approximation 
scheme. 

In the case of the free bosons, the vector InN) is 
simply given by 

(2.18) 

If one suspects that we might have made an un­
necessary detour, he should remember the whole 
procedure of our approximation: The point is that 
the change of variables (2.13) provides us with a 
tractable method of approximation if the Bose­
Einstein condensation is assumed. It is well-known 
method of small oscillation. Once such a change of 
variables is adopted, we are forced to abandon 
the conservation of particle number. The use of a 
chemical potential is a partial remedy, and, at the 
last stage, we have to return to the original variables 
(by the transformation 'Ua) to construct the state 
with sharp particle number. 

In the following application to the case of the 
interacting bosons, we shall not try to construct 
the state with sharp particle number. The full dis­
cussion of the state vector will be given elsewhere. 

Infinite Volume Limit 

Hitherto the change of variables (2.13) has been 
looked upon as an useful means of developing an 
approximation scheme. Now, we want to explain 
that it becomes imperative when we consider the 
limit of infinitely large system (N 0 ~ <Xl or V ~ <Xl 

with Po = No/V kept constant). The argument here 
is of heuristic nature and the detailed one will be 
given in Sec. 9. 

We use the model of free bosons, again. Before 
entering into the main subject, it will be instructive 
to examine the limit V ~ <Xl of our true vacuum 

13 Here, we are speaking in terms of the original repre­
sentation: The operators JC and ;n are written in terms of 
aJ<e i " and ak te-ia and the state is created by the suit­
able applications of ak te-ia on 10). 
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(2.16): The true vacuum has the form of direct 
product of vectors representing the particles with 
various momenta k. Let us avoid the complication 
due to the scale transformation needed to relate 
the representations in boxes of different sizes V by 
concentrating our attention to the k = O-component 
of the state vector, for which the scale transforma­
tion is unity. The infinite volume limit is easily seen 
not to exist. In fact, if that component of the true 
vacuum is denoted by Ina(V»o and the norm of a 
vector by II II, then 

o(na(V) I na,(V'»o 

= exp [-tpo{ V + V' - 2V!V'lei(a'-a)} J. (2.19) 

and therefore 

Illna(v»o - Ina(V'»o II 
= 2{1 - exp [-tpo(V! - V,!)211, (2.20) 

so that the Cauchy condition for the (strong) con­
vergence, 

Illna(v»o -lnacV'»o II~Oas V, V'~ co (2.21) 

is obviously violated. 
In the same way, we can conclude the nonexistence 

of the limit, limv~", InN) with Po = No/V kept con­
stant. Precisely speaking, we have to say that the 
limit does not exist in the Fock space for ao and a~. 
This is quite understandable because the Fock space 
is defined as the closure of the space spanned by the 
eigenvectors of the number operator with finite eigen­
values.7 Any vector with an infinite occupation 
number cannot have a finite length. 

The nonexistence of the limit means that the 
infinite system cannot be dealt with unless we con­
struct a new Hilbert space suitable for representing 
it. In order to accomplish this, we have to invoke the 
Gelfand construction. 14 

In the Gelfand construction, we restrict ourselves 
to the smeared-out field operators, i.e., 

<pct) = L: C2V)-![J*Ck)a: + j(k)ak] C2.22) 
k 

and its canonical conjugate 

7r(g) = L: i(2V)-![g*Ck)a: - y(k)akJ. C2.23) 
k 

where the functions, t and g, are assumed to be 
normalizable, 

J ItCk)12 dk < co, etc. 

14 A. S. Wightman, Phys. Rev. 101, 860 (1956). R. Haag, 
Lectures in Theoretical Physics (Interscience Publishers, Inc., 
New York, 1961), Vol. III. M. A. Naimark, Normed Rings 
(P. Nordhoff Ltd., Groningen, The Netherlands, 1959), 
Chap. IV. 

The construction of the space is achieved when we 
obtain all the vacuum expectation values of the 
products of these operators, (the Wightman func­
tionals).15 The vacuum expectation values in the 
infinite volume representation (which we want to 
construct) will be obtained as the limit of those 
expectation values computed with InaCV» or InN) 
employed as the vacuum vector. 

Let us now consider what will happen if we take 
the vacuum to be the state with sharp particle num­
ber. The reason why we take it is that the ground 
state of the interacting bosons will be of this nature 
and that the ground state is required to be contained 
in the Hilbert space [conventionally denoted by 
,f)N(V ~ co )]. In order to obtain all the vacuum ex­
pectation values, it is convenient to compute 

(2.24) 

and to take the limit V = N / p ~ co with p fixed. 
According to Eq. (2.15), we have 

ENCt, g) = [(nN I nNW I 
{" d{3 {" da 

(2.25) 

Since we are interested in the limit of infinite system 
CN ~ co), the method of steepest descent is the most 
suitable for the computation. The same sort of 
computation has been carried out for the case of 
fermions in the BCS model.12 Without repeating it, 
we write down the result: 

ENCt, g) ,-..., [(nN I nN)r
1 

X i: d{3 {" da exp [-!p V(a - (3)2] 

X exp [iC2p)!{J(0) cos a + yeO) sin all (2.26) 

where we have put j(k) = yCk) = 0 for k ~ 0 be­
cause these are immaterial for the present discussion. 
What we have to emphasize here is that, in the limit 
V ~ co, the contribution to the integral comes only 
from the neighborhood of a = {3, and the Gaussian 
integral cancels the normalization factor that can be 
computed in a similar way. The concentration of the 
integrand around a = {3 means that 

lim [(nN I nN)rleiN(a-P) (npl /",(f)eir(o) Ina) (2.27) 
v~", 

a: o(a - (3). 

As is seen from Eq. C2.19), the vectors, Ina (V» and 
15 This is because the Hilbert space is so constructed as 

to be spanned by the vectors generated by the repeated 
applicatIOn of field operators on the vacuum (the cyclic 
representation). The collection of the vacuum expectation 
values can then be regarded as giving all the matrix elements 
of the field operator. 
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FIG. 1. The two-body potential in the present model. 

In~(V)(a ~ (3), are orthogonal in the limit V ~ co. 
In addition, we have just found that these two 
vectors cannot be connected with any powers of 
the smeared-out field operators. Then, we have to 
conclude that the representation of the field opera­
tors with the sharp-particle-number ground state is 
reducible: The Hilbert space 4'N(V ~ co) is de­
composable into the direct sum ofthose 4'a(V ~ co )'s 
which are constructed by a repeated application of 
the field operators upon Ina (V) together with the 
limiting procedure V ~ co applied to the Wightman 
functions. 

Now, it is not difficult to see that the representa­
tion with Ina) employed as the vacuum is irreducible, 
or in other words, all the vectors in 4'a (V ~ co) 
can be connected each other by the application of 
the smeared-out field operators, since the representa­
tion is provided by the Fock representation for a: 
introduced in Eq. (2.13), (for k ~ 0, a~ = ak).16 
This completes our argument. 

The conclusion is the following: When the system 
is infinitely large and is in the state of Bose-Einstein 
condensation, the change of variables (2.13) is 
imperative if one wants to use an irreducible repre­
sentation of the creation and annihilation operators.17 

The corresponding arguments for the interacting 
boson system is given in Sec. 9, where the present 
discussion of free Bose gas will be useful as a 
reference. 

III. DEFINITION OF THE MODEL 

The model we discuss is the same as that treated 
by Huang4 in 1959. But, for the sake of convenient 

16 The detailed discussion is given in Sec. 9. 
17 Precisely speaking we have to say "if one wants to use 

an irreducible representation of the smeared-out fields." 
When we restrict the field operators to the smeared ones, 
we are presuming that every quantity of physical interest 
can be expressed in terms of them only. See Refs. 9 and 12. 

reference, we briefly resume the characteristic 
features of the model. We take units so that Ii = 1 
and 2m = 1, m being the mass of the particle. 

Two-Body Potential 

We consider a dilute assembly of Bose particles 
interacting through a two-body central potential 
which, as is shown in Fig. 1, consists of a hard core 
of radius a and a weak attractive part w(r) extending 
outside. (r: interparticle distance). 

To simplify computations we choose the attractive 
part w(r) such that its Fourier transform is a step 
function: 

Wk == J dre,k.rw(r) = ~ -81r(a + b) for Ik/ < ko (3.1) 

lO for Ik/ > ko• 

In the coordinate space, it amounts to 

w(r) = -3D Mkor)/(kor) , (3.2) 

where it(x) is a spherical Bessel function and D is 
the depth of the potential: 

D = /w(O) I = (321r2/3)(a + b)k~. (3.3) 

As is seen in Fig. 1, the range may be represented by 

ro = 4.5/koo (3.4) 

Now, in order to discuss the many-body problem 
it will be sufficient to take the binary collision only 
because we assume the gas to be of low density. In 
addition we require 

(3.5) 

so that the hard-sphere part of the interaction will 
affect the S wave only at least for the low-energy 
particles (Dt gives the wavenumber of zero-energy 
particles in the potential) which would form the 
major part of the gas near the Bose-Einstein con­
densation. Thus the interaction can be substituted 
for by 

vCr) = 81raa(r)(a/ar)r + w(r), (3.6) 

the first term being the pseudopotential18
•
19 that is 

to represent the hardsphere part. We have to note 
that the pseudopotential is not Hermitian. 

The Hamiltonian; the Subtraction Prescription 

In the second-quantized form, the Hamiltonian 
is given by 

JC = Lk ea:ak + 2~ Lk I Vk L a!+ka!_kapaQJ (3.7) 
p.q 

18 K. Huang and C. N. Yang, Phys. Rev. 105, 767 (1957). 
19 E. Fermi, Ricerca Sci. 7, 13 (1936). J. M. Blatt a.nd 

V. F. WeisskoJlf, Theoretical Nuclear Physics (John Wiley 
& Sons, Inc., New York, 1952), p. 74. 



                                                                                                                                    

QUANTUM MECHANICS OF MANY-BOSON SYSTEM 387 

where 

VI< ;:; J dr eik
•
r [811"a8(r) + w(r)] 

{ 
811"a for k E ~I1' 

= -811"b for k E to, ~I}, 
with the sets of momenta defined as follows: 

(3.8) 

~I = {kj 0 < Ikl < ko}, ~I1 = {k; ko < Ikll. (3.9) 

One may notice that b gives the total scattering 
length at zero energy. 

The differential operator (iJ/iJr)r in the pseudo­
potential has been taken care of by the subtraction 
procedure indicated by the prime in the summation 
over k in (3.7). Suppose that a matrix element f(k) 
arising from (3.7) behaves like 

f(k) ""-' Ak-2 + O(k-S
) at k -T <Xl, (3.10) 

then the subtraction is defined as 

L' fCk) = L [fCk) - Ak-2
]. (3.11) 

k k 

The detailed account has been given in the Ref. 18. 

Orders of Magnitude 

The parameters of our model, p, a, b, and ko, are 
characterized by the smallness of the following 
dimensionless quantities: 

(3.12) 

all of which are assumed to be of the same order of 
magnitude20 as designated by E. 

While (paS)! '"" E says that the space occupied by 
the gas molecule (hard sphere) is small compared 
with the volume of the gas, the number of the mole­
cules within the range of the attractive potential 

(1/k~)p ""-' l/E (3.13) 

is not small at all. However, the hard core suppresses 
the total scattering length at zero energy and there­
fore the number of molecules within the sphere of 
radius b is small: 

(3.14) 

In the following we find it most convenient to take 
811"pa as the unit of energy. 

IV. ANATOMY OF THE "HAMILTONIAN" 

We start on our job to determine the energy 
eigenstates of the gas. Since, as explained in Sec. 2, 

20 Because of the discontinuity of the occupation number 
distribution, we cannot come to the case of pure hard core by 
taking limit ko --+ O. 

we have to make a transformation that violates 
the conservation of the particle number anticipated 
from the very structure of our Hamiltonian (3.7), 
what we have to diagonalize is not the Hamiltonian 
itself but 

x = 3C - p.'in, (4.1) 

where p. is the chemical potential and 'in is the number 
operator, 'in = Lk a~~. The energy eigenvalue of 
the gas is given by the eigenvalue of X plus p.N tot, 

where N tot is the total number of gas molecules.21 

We shall call the operator X "Hamiltonian". 
Based on the idea presented in Sec. 2, we make the 

replacement 

(4.2) 

where ao on the right-hand side stands for the annihil­
ation operator in a new representation22 and N is 
the average number, both belonging to the unper­
turbed eigenstate of zero momentum k = O. a is the 
phase angle (0 ::; a ::; 211") characterizing, together 
with N, the irreducible representation of the Bose 
commutation relation. 

Remark: It is not ab initio obvious if the replace­
ment (4.2) allows the use of Fock representation in 
the limit N -T <Xl. Anyhow, the smallness of the 
matrix element of ao on the right-hand side should 
be checked at the end of the calculation. 

After the replacement (4.2) is done, it is conven­
ient to anatomize the Hamiltonian to obtain the 
following components. In this analysis we ignore the 
phase factor e,a in Eq. (4.2) to avoid the unnecessary 
complication. It is true that the phase factor can be 
removed from the" Hamiltonian" by carrying out a 
phase transformation. 

(4.3) 

but, as shown in Sec. 2, this transformation cannot 
be effected by any unitary transformation. Never­
theless, we can easily check that the phase factor 
does not affect the eigenvalue of the" Hamiltonian" 
at all. 

Now, the anatomy. After the replacement (4.2), 
we divide the "Hamiltonian" into several compo­
nents: in addition to the one that contains the 
operators ao and a~ only (the k = O-component), 
we have ~r-, ~II-component and the components that 
describe the interactions among k = 0-, ~I-' and 

21 In Sec. 2, the total number was denoted by N and the 
number of the k = O-particles by No. 

22 For the sake of SImple notation, we omit the superscript 
F that have hitherto been attached to the operator ao on the 
right-hand side. 
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TABLE 1. The components of the "Hamiltonian": their 
orders of magnitude in unit of 81rap. 

• • 
N' N 81rap X • 

stn-particles. There comes the k = O-component 
first: 

(N2 ) (N! ) t Jeo = 2V vo - NJ.I. + VVo - N!J.I. (ao + ao) 

+ ~ vo(a~a~ + aoao) + (~ Vo - J.I. )a~ao, (4.4) 

'1/>0(1) Nt (t t + t ) "" = V Vo aoaoao aoaoao, 
(4.5) 

Then, there follows the component for the stn-
particles (the particles with momentum k E stn), 
which will constitute the heart of the matter in the 
present analysis: 

Jen = L ea:ak 
II 

N "', t t t + 2V ft vk(aka-k + 2akak + aka-k) 

+ (~vo - J.I.) fr: a:ak, (4.6) 

where the summation Ln extends over stn and the 
prime thereon indicates the subtraction. One may 
notice that the structure of Jen is slightly different 
from the structure of Jeo. 

The interaction between the k = O-particle and 
the stu-particle consists of four parts,: Jeon + Je6g + 
Je6ii + Je6~i. The most important one is given by 

Jeon = 'OIl + 'Oil' } 
where Nt (4.7) 

'On == -V ao L' vk(a:a~k + a:ak) 
II 

The other three are: 

where 

(4.8) 

The term 

Je6g = V- 1 L vka;+ka~kapaO + Herm. conj., 
p,.O 

p+k,.o 

though existent too, will be shown to be negligible. 
(See Refs. 28 and 29, pp. 390 and 391, resp.) The out­
standing role of the stu-particles can be understood 
by referring to the order of magnitude assumption 
b/a « 1 in Eq. (3.12). The interest in the k = 0-
particles comes from the stability question of the 
macroscopic occupation of k = 0 level (Bose­
Einstein condensation). 

The component for the str-particles,23 

JeI + JeOI + Je6~) + Je6i) + Je6~), (4.9) 

can be obtained from the above [Eqs. (4.7) and (4.8») 
by replacing the summation LII by LI. The remark 
that the structure of JCII is slightly different from 
that of Jeo applies also to Je I . This difference will be 
important when we deal with the phonon spectrum 
of stI-particles and the stability of the macroscopic 
k = O-occupation, the former in Sec. 7 and the 
latter in Sec. 6. 

Finally, we have the interaction between stI- and 
st u-particles, 

(4.10) 

which will be analyzed in detail in Section 7. The 
tilde above JCI II is just for the sake of later con­
venience. 

Now, in order to see the relative importance of 
the above components, their" orders of magnitude" 
(in the unit of 8'lrap)24 are presented in Table 1. 
The estimation is based on the following anticipation: 
(1) The "order of magnitude" of the operator ao will 
be 1. (2) The summation over the momenta (l/V) Ln 
will result in k~ ""' pe and also (l/V) LI· .. ""' pe. It 
should be noted that the" orders of magnitudes" of 
operators are not necessarily multiplicative. For 
example, the diagonal element of the operator (Jeon)2 
is of the order of (8'lrap)2 e but not of (8'lrap)2 iN be­
cause the momentum conservation restricts the phase 
volume. 

If the above assumption (1) is accepted, we may 
neglect J(61) and J(62) exactly in the limit N --7 ro 

because the intermediate "phase space" consists of 

23 Since the fifth part :leOI (4) is again negligible, we don't 
write it down here. 

24 By order of magnitude of an operator we mean the 
orders of magnitude of its representative matrix element. 
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a single level, k = 0, only. But, a reservation should 
be made to this statement since the operator ao 
is unbounded and the state in question can be an 
infinite superposition of the states with different 
occupation number in the k = O-level. 

We see from Table I that the most important 
component is XII, which will be diagonalized first in 
the next section to form the backbone of our analysis. 

v. DIAGONALIZATION; THE LOWEST ORDER 

Before entering into the diagonalization of XII, 
we have to determine the value of the chemical 
potential /.t. This can be done by the requirement 
that the" Hamiltonian" should not contain the term 
linear in ao or a~ (see Sec. 2). In the lowest order, we 
see from Eq. (4.4) that 

/.t(O) = pVo = -87rpb. (5.1) 

Then, the last term in Eq. (4.6) vanishes and the 
operator XII turns out to be 

XII = .L:fI{Pka:a~k + 2Qka:ak + Pkaka-k}, 

where (5.2) 

According to the formulas in Appendix I, this opera­
tor is diagonalized by the following Bogoliubov 
transformation, 

ak = bk cosh Ok - b~k sinh Ok. (5.3) 

For the sake of the convenient reference, we list 
two equations that define the angle Ok for k E ~II: 

sinh2 Ok e + 87rap 1 (87rap)
2 

= 2kW + 167rap)! - 2'"'-'~' 

cosh Ok sinh Ok (5.4) 

87rap 47rap (87rap) 2 

= 2kW + 167rap)f '"'-' 7 -~ 
where ,...., indicates the asymptotic behavior at 
k ~ CD. The diagonalized operator is given by 

XII = L k(e + 167rap)!b:bk + CII • (5.5) 
II 

where 

= 87rapN -H- (P;3YF,(v) 
(5.6) 

with25 

26 In Huang's formula for F,(v), the term -iv is missing. 
If the subtraction prescription is followed, F l( v) should 
yanish when " ....... co because it is given by a convergent 
mtegral over the range (v, co). Thus the term - i JI is in­
dispensable. 

v == koj(167rap)i, 

F,(v) == ¥H(l +/)1 - HI +v2
)5/2 = lv+ iv3 + kv 5

]. 

The zero-point energy C II is computed by applying 
the subtraction procedure indicated in Eq. (3.11). 
Since the summand behaves like -(47rap)2je as 
k ~ CD, the summation goes as follows: 

CII = (2~3 i~ [~ w + 167rap)i 

- ~ (e + 87rap) + (47r::)2J47rk2 dk. 

The excitation described by Eq. (5.5) is exactly of 
phonon type. 

The transformation (5.3) is effected by 
t t 

'U(Ok) = exp [Ok(aka-k - aka-k)] 
as (5.7) 

bk = 'U( Ok)ak 'U t (Ok) . 

Then, the vacuum 1011) of bk (or of XII) is related to 
the vacuum 10) of ak: 

(5.8) 

One may notice that the right-hand side is an infinite 
product and the convergence should be examined. It 
turns out that the infinite product does not converge 
when the system is infinitely large and therefore that 
we have to construct a new representation. But, we 
want to defer the detailed discussion to the suc­
ceeding paper on the mathematical structure of the 
Huang model. 

Remark: In this approximation, we get the equa­
tion corresponding to Eq. (2.14) if ak and a: are 
replaced by akeia and a:e- ia, respectively, and if 
we apply the additional transformation 'U a in Eq. 
(2.13) to take care of the change of variables. Here, 
we don't want to calculate the state vector with 
sharp particle number. 

VI. THE FLUCTUATION OF THE CONDENSED STATE 

In the last section, we have diagonalized the ~u­
part of the "Hamiltonian." Now, we are in the 
position to depart from Huang's theory; we are 
going to diagonalize the k = O-part. Under the condi­
tion (5.1), however, Eq. (4.4) results in the instability 
of the Bose-Einstein condensation.26 In fact, 

Xo = !pvo(a~a~ + aoao - N), (6.1) 

can be regarded as the Hamiltonian of a harmonic 
oscillator with an imaginary frequency, Xo = 

26 Huang has notice in his paper that a similar instability 
arises for the .lrI-particle when its interaction with the 
.lru-particle is neglected. 
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!pVO(p2 - x2 - N), because the creation and the 
annihilation operator can be represented by a 
canonical pair of the momentum p and the coordi­
nate x: 

(6.2) 
[P, xl = -i. 

There would not exist even the normalizable ground 
state. 

This paradox will be solved quite naturally if we 
take into account the interaction between the k = 0-
particles and the .filII-particles. While the most 
important interaction of this type is Xon given by 
Eq. (4.7), we shall see later that Xm should be 
taken into account as well. 

In order to take care of these interactions, let us 
first diagonalize Xn + XOII + x6~i with respect to 
the .filu-degrees of freedom. Then, Xo + (XII + 
XOII + x~~D can be regarded as consisting of the 
diagonal array (labeled by the states of .filII) of sub­
matrices which are labeled by the quantum numbers 
of the k=O-particles. We shall carry out the diagonal­
ization of XII + XOII + Xm by using the perturba­
tion theory. In this section,27 the unperturbed state 
of XII is taken to be InII) of Eq. (5.8). 

If we start from the first-order perturbation theory, 
what we meet first is a small correction to the phonon 
spectrum, Eq. (5.5). The eigenmode of the con­
densed k = O-particles will come into question 
later. 

Correction to the Phonon Spectrum 

In the first-order perturbation theory,xon yields 
the terms linear in ao or a~: 

(nIl I xon I nu) 

= N1ao VI L:' Vk (nIl I {a:a~k + a:ak} I nIl) 
II 

+ Herm. conj. (6.3a) 

The expectation value can be computed, for example, 
as 

(nIl I a:a~k I nu) 

= (01 'Ut(Ok)a:'U(Ok)'UtcOk)a~k'U(Ok) 10) 

= (01 (a: cosh Ok - a-k sinh Ok) (6.3b) 

X (a~k cosh Ok - ak sinh Ok) 10) 

-sinh Ok cosh Ok I 

where use has been made of Eqs. (5.3), (5.7), and 

27 In a separate paper, we shall discuss the behavior of the 
system related to the excited states of the ~u-particles. 

(5.8). In addition to the contribution from XOII, 
[Eq. (6.3)], the linear terms may come from xcig, 
too [cf. Eq. (4.8)]. But the latter contribution is 
smaller than the former by b / a '" E and is neglected.28 

The term linear in ao or a~ must be canceled by 
changing the chemical potential from the value of 
(5.1) to Jj = Jj(O) + Jj(l), where Jj(l) is given by the 
coefficient of ao on the right-hand side of Eq. (6.3): 
Carrying the integration over k with the subtraction 
prescription in mind, we get 

Jj(l) = 811'pa.8(pa3/1I')i[G1(v) + Glv)] 

with v == ko/CI611'ap)t and 

G1(1I) == (1 + l)l - v, 

G2(1I) == (1 + l)' - i(l + v2)1 + iva 0 

(6.4a) 

(6.4b) 

It is remarkable that Jj (1) is of the same order as 
Jj (0). For the sake of convenient reference, we list 
the origin of these functions: 

1 f' t t 811'a (211'l II (nnl aka-k I nIl) dk 

= 811'pa 0 8(pa3 /1I')'G1(v) I 

1 f' t 811'a(211')8 II (nul akak Inll)dk 

= 811'pa·8(pa8/1I')lG2(v). 

where the subtraction is indicated by prime. 

(6Ac) 

Now, the change in the chemical potential causes 
the last term of Eq. (4.6) to revive thus affecting 
the coefficient Qk in Eq. (5.2); its new value is 

Qk = !k2 + 411'ap + ..:lQk, ..:lQk = _!Jj(l). (6.5) 

If, however, one wants to know the effect on the 
phonon spectrum in Eq. (5.5) now, it is to hasty 
because we are now asking the perturbation only on 
the ground state Inn) of .filII-particles. What we can 
conclude at this stage is the change of the zero-point 
energy Cn in Eq. (5.5), the corrected value of which 
is found in the spirit of the perturbation theory as 

with 

where 

..:lCu == L:' 2..:lQk (nul a:ak Inn) 
II 

512 pa3 

-811'apN""""3 --;- F2(V) , 

(6.6a) 

(6.6b) 

F2(1I) == 3(1 + 112)1 - 2(1 + 112)1 + 2113• (6.6c) 
28 The first-order contribution from :leon(·) is zero because 

the state cOIlJlists of pairs of particles with opposite momenta. 
See Eq. (1.8) in Appendix 1. 
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It might be interesting to note here that this correc­
tion can be obtained also by modifying Eq. (5.6) 
in the following way as suggested by Eqs. (5.2) and 
(6.5): 

C~I = L:' {![(k2 
- p.(l»(k2 + 16?rap - p.(l»]l 

II 

- !W + 87rap - p.(l})}. (6.7) 

The Stability of the Condensed State 

Having settled the question of terms linear in 
ao and a~, we now proceed to the quadratic terms. 
In addition to X o, Eq. (4.4), we have some correc­
tion terms induced by the interaction between the 
k = O-particles and the sru-particles. Thus, the 
determination of the coefficients of "perturbed 
Hamiltonian, " 

, 1 (pa
3
)' t t t Xo = 87rap "2 -;; [Paoao + 2Qaoao 

+ Paoao] + Co, (6.8) 

will be the main task of this section. In this equation, 
Co stands for the zero-point "energy" of the k = 0-
mode. 

Hitherto, our arguments have been based on the 
assumption of the Bose-Einstein condensation intro­
duced in Secs. 2 and 4. Namely, we have assumed 
that, after the change of variable ao I'J ao + N' with 
some macroscopic number N, the matrix elements 
of ao should be of order 1. Now, if we fix the coef­
ficients in Eq. (6.8), we can ask the condition that 
guarantees this assumption. It will be called the 
stability condition for the condensed state, or the 
k = O-stability condition. According to Appendix I, 
the eigenfrequency of X~ would be imaginary suggest­
ing the decay of the condensed state, unless 
(Q - P)(Q + P) 2:: O. Here, we have to exclude the 
equality, because, as is seen also in Appendix I, it 
makes the spectrum of X~ continuous in contradic­
tion to the normalizability postulate of the ground 
state. Finally, we have to require Q > 0 so that the 
spectrum be bounded below, otherwise the k = 0-
mode of oscillation would grow up wildly thus 
violating the finiteness assumption of the matrix 
elements of ao and a~. Summarizing, we find that 

(Q - P)(Q + P) > 0 and Q > 0 (6.9) 

constitute the necessary condition for the Bose­
Einstein condensation. In the last part of this section 
we shall examine the "orders of magnitude" of ao 
and a: to know that, in the present case, the condi­
tion (6.9) is also sufficient for the condensation. 

Now, we are in the position to determine the 

coefficients in Eq. (6.8) by computing the perturba­
tion effects due to the srII particles, which, as we 
shall find, amounts to the same order of magnitude 
as the unperturbed part Xo. The effect of srI-particles 
is negligible because of the assumption b/a « 1. 

Within the first-order perturbation theory, impor­
tant is the interaction xcig in Eq. (4.8) that induces 

(nul xcig InIl) = 87rap.4(7J'[Gl(,,)a6a6 

(6.10) 

where G1 and G2 have been given in Eq. (6.4). The 
effect of Xm can be neglected. 

In the second order, the interaction X OII in Eq. 
(4.8) can induce the quadratic correction of the 
same order of magnitude as x~~~ did in the first order: 

~, (nrrl X OII Ik, -k)(k, -kl X OII Inn) 
fIt -2k(e + 16?rap)! 

= 87rap.8(p:3r[G3(,,)a6a~ + 2{G1 (,,) + G3(,,)}a~ao 

where 

G3 (,,) == !(1 + lr!, 
G4 (,,) == H(1 + l)t - " - !(1 + lrt 

+ !7r - tan-1 
,,], 

and the intermediate states are defined as 

Ik, -k) = [IIIl'lL(ek)Ja:a~k 10). 

(6.lla) 

(6.11h) 

(6.12) 

It would be instructive to add the following remarks: 
First, one should not overlook the factor 2, for 
example, in 

(6.13) 

that accounts for the two possibilities of the inter­
mediate state, p = ±k. Second, as warned by II/2 
of L:~I12 in Eq. (6.lla), the summation over the 
intermediate states should not be duplicated by 
taking I-k, k) in addition to Ik, -k). 

The above two exhause9 the induced parts of 
X~ that are of the same order of magnitude as the 
unperturbed part Xo. Summing up Eq. (4.4), (6.10), 
and (6.11), we get the coefficients in Eq. (6.8), 

29 The second-order effect of :leon (4l vanishes again because 
of the structure of I Orr) mentioned in the previous footnote. 
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b ( 'II" )' p=X-- -a pa3 , 

Q = X, 
where30 

X == 8[(1 + V2)t - v + (1 + v2f'], 
and the value of the chemical potential [(5.1) and 
(6.4)], has been used to compute Q. The zero-point 
"energy" is found to be 

Co = [!pvo - (p.(O) + p.(l)]N 

+ 8'11"ap.~ (p;7. [(Q2 - P2)' - Q + 16G4(v)]. 

(6.15a) 

and the excitation spectrum to be multiples of Wo, 

where 

(b)'(pa3)i[ b ( 'II" )!Ji 
Wo = 8'11"ap ~ -;- 2X - ~ pa3 • (6.15b) 

From Eq. (6.14), we see immediately that Q > 0 
and Q - P > 0 so that the condition (6.9) can be 
written as Q + P > o. Namely, 

Q (~)! < 2X. 
a pa 

(6.16) 

We call this the k = O-stability condition to dif­
ferentiate it from the stability condition for srI-
particles which will be discussed in the next section. 

It is interesting to remark here that we would get 
the same condition as Eq. (6.16) even if we did not 
take the unit;" = 1, 2m = 1. This is because we can 
restore m and n if we multiply every term of X by a 
common factor ;"2/(2m). Thus, the condensation 
condition is independent of the mass when it is 
written in terms of the scattering lengths. Suppose 
we take the hard-core radius a as the unit of length, 
then the right-hand side of Eq. (6.16) is a function 
of the range l/ko of the attractive potential (see 
Fig. 1). It is reasonable that the more likely the 
condensation is the larger the density p we take; 
qualitatively, this tendency is shared by the free 
Bose gas.3l The limit on b means that the total scat­
tering length or the strength of the attractive po­
tential should not be too large. However, it seems to 
be hard to understand that the limit on b decreases 
as the range l/ko becomes smaller. The further dis­
cussion of this condition is given in Sec. 8. 

Now, in order to find the ground state Ino) of X~ 
30 Apart from the normalization, this function is different 

from Huang's by the term - v, which is due to the subtraction. 
31 L. D. Landau and E. M. Lifschitz, Statistical Physics 

(Addison-Wesley Publishing Company, Inc., Reading, Massa­
chusetts, 1958). 

we can use the formulas in Appendix I: 

(6.17) 

Since P and Q in Eq. (6.14) is of order 1, we see 
that the matrix elements of ao and a~ are also of the 
order of magnitude 1, thus confirming our starting 
assumption of the "small oscillation." In conclusion, 
the condition (6.16) is necessary and sufficient for the 
condensation assumption to be valid, when the order 
of magnitude relation (3.12) is presumed. 

VII. THE ~I-PART 

Now, we want to conclude the diagonalization of 
the "Hamiltonian" by determining the srrpart of 
the energy spectrum. If one is familiar with Huang's 
work,' it will be interesting to discuss the relation 
between his method and ours of managing the con­
servation of particle number: while Huang took it 
into account somewhat explicitly, we have taken an 
implicit way by invoking the chemical potential. 
The approximation we make is the same as Huang's. 

Diagonalization 

The first task is to determine the effective inter­
action among srrparticles induced by their inter­
action XI II, Eq. (4.10), with the sru-particles. 
According to Huang, the interaction XI II can be 
approximated by the sum of the following two: 

+ t d (2) (2) + (2) t XI II = '0 1 II '0 1 II an XI II = '01 II '0 I II, 

where 

t t t 
X (apaK + apa_K)a" 

(2) 8 1 "," t t '01 II = 'Ira 2V 'i'" "p (aKa-Ka'/.a_X 
(7.1) 

t t + aKaKa'/.a.,J; 

the Roman capitals and the Greek denote the mo­
menta in srI! and srI, respectively, 

K, P E sru and J.. E srI. 

Since these two, XI II and x~2iI' are quite similar 
to Xou and x~g, respectively, we can determine the 
influence of the srwparticles on the srI just in the 
same way as we have determined that of the srII 

on the k = O-particles. In fact, it can be obtained 
from the results in the last section by a simple 
substitution, ao ~ aA (we take advantage of the 
fact IJ..I « Ip\). 

As for the unperturbed part of the "Hamiltonian," 
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0.1 

FIG. 2. The relations between the parameters of the poten­
tial and the particle density. They represent the relation in 
the lowest energy state, Eq. (8.11), the k = O-stability 
condition, [Eq. (6.16) or (8.12») and the Sl'r-stability con­
dition [Eq. (7.7b) or (8.12)]. 

our attention should be called, however, to the slight 
difference in structure between Xo and XI as re­
marked below Eq. (4.9): in addition to the terms 
that have counterparts in X o, we have -81rb(N IV)· 
:EI a:ak in XI which together with the kinetic 
energy term makes the Qx, Eq. (7.3), different from 
the corresponding quantity Q for k = O-particles, 
Eq. (6.14). 

Thus, by applying the necessary modifications to 
Eqs. (6.8), (6.14), and (6.15), we obtain the perturbed 
"Hamiltonian" for Si\-particle: 

xf = L [Pxa~a~), + 2Qxaia)l. + Pxa)l.axJ + Cr. (7.2) 
1 

with 

p. == B7rap.~ (p:3)l X - ~ C:aYJ. (7.3) 

Qx == !X2 + Px 

and 

Cr == 81rap .4(P:3Y t:' 0(1). (7.4) 

The spectrum of X~ is readily obtained by the use 
of the Bogoliubov transformation to be 

X~ = :E X(X2 + 161ra' p)t + Cr 
• 

with 

(7.5) 

where X is given in Eq. (6.14). We have to note here 
that the stability condition 

X2+ 161ra'p> 0 

is satisfied by all X E .fi'l when and only when 

a' > 0, 

or written out explicitly, 

!? (...!!.a)t < x. 
a pa 

(7.6) 

(7.7a) 

(7.7b) 

This condition differs from the stability condition 
for the k = O-particles [Eq. (6.16)] only by a factor 2 
on the right-hand side of the latter. Even if the 
latter condition is satisfied, a' can be negative so 
that the condition (7.6) can be violated by some 
X's. We call this kind of instability .fi'r-instability. 
The relation (7.7b) is shown in Fig. 2. In the same 
way as explained for k = O-instability, we can see 
that the .fi'r-instability results in large matrix ele­
ments of a~ax etc., thus violating our starting as­
sumption (see Sec. 4). We see in Sec. 8 that Eq. 
(7.7) is nothing but the condition for the sound 
velocity to be real. 

Method of the Chemical Potential 
Now, let us proceed to compare the method of 

Huang and ours to manage the conservation of 
particle number. 

In order to secure the conservation Huang made a 
substitution (2.3) as seen in Eq. (34) of his paper, 
while we are relying upon the chemical potential. 
Obviously, there is no one-to-one correspondence 
between the terms of Huang's :JC and our X. Never­
theless, the energy spectra reSUlting from these two 
theories are quite similar to each other, the only dif­
ference consisting in what is meant by the particle 
density p: while our p means the average density of 
the k = O-particles/z Huang's p means the total 
density. Remembering the applicability limit of the 
pseudopotential, however, we know that this dif­
ference is not so substantial. 

For the sake of indicating that there is still some 
sort of correspondence among the terms of Huang's 
:JC and our X, we compare Huang's :JCI in his Eq. 
(68) with our XI + XI II + X?) III both being in­
tended for the Hamiltonian of the .fi'l-particIes in 
interaction with the .fi'II-particles. One of the re­
markable differences consists in that the term 

-41ra V- 1 :E (aia~K + aKa_K)a~aX (7.8) 
K 

32 Thus, the so-called depletion effect is automatically 
taken into account. 
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FIG. 3. The energy per particle is shown as a function of 
the particle density. The parameters of the potential are 
fixed. The regions of stability are also shown. 

inHuang'sEq. (68) is missing in our Xl + XI II + XI(~~' 
This term is generated by his substitution (2.3). 
At the same time, we observe that the terms 

(7.9) 

in our "Hamiltonian" do not find their counter­
part in Huang's, in which the second term does not 
exist by its very nature and the first one is amalga­
mated into his V~, thus being neglected [see Eq. (29) 
and Sec. 4 of his paperJ. These constitute the only 
difference that may affect the first-order perturba­
tion effects by the ~II-particles. Now, by taking the 
matrix elements with the ground state of ~n­
particles we see in fact that Eq. (7.8) and Eq. (7.9) 
result in one and the same effective interaction among 
the ~I-particles! This completes the comparison be­
tween Huang's method and ours. 

VIn. PROPERTIES OF THE SYSTEM 

Having completed the diagonalization of the 
"Hamiltonian," we can draw various conclusions 
concerning the properties of the Huang model, 
among which we want to concentrate our attention 
to the properties of the ground state. 

Ground-State Energy vs Density 

Now, assuming that the system is in the ground 
state with no phonon excited, we collect the zero­
point "energies" in Eqs. (5.6), (6.6a), (6.15a), and 
(7.4), to which we add (!-L(O) + J.I.(l)Ntot to obtain 
the ground state energy Eo in its true sense of words. 

We know, however, that the second term of Co, 
Eq. (6.15a), is not macroscopic and I1CII and CI , 

Eqs. (6.6b) and (7.4), are smaller by E than the 
other contributions so that they are neglected. Thus, 

Eo 64 (pa
3 )! N = -47rpb + 87rpa'

15 
-;;:- Fl(V). (8.1) 

In our approximation, N can be regarded as the 
total number of particles since, as seen from Eq. 
(6.4c), even the average number of particles in ~II 
is given by 

(8.2) 

It is quite satisfactory that the energy of the system 
is thus proved to be an extensive quantity. 

By the way, it was from this result, Eq. (8.2), 
that Huang and others concluded the consistency 
of their approximation procedure.2

•
4 As we have 

seen, however, the condensation can be unstable 
even when the theory yields Eq. (8.2). 

In Fig. 3, we plot the energy per particle as a 
function of II = ko/ (167rap)i; written down explicitly, 
Eq. (8.1) is cast into the following form, 

Eo = 4~2 (koa)3 ~ [_ 47r !!. + 2. 64 ! Fl(v)]. (8.3) 
N a 47r v koa a 15 v 

When the parameters of the potential are fixed, the 
variable v can be regarded as representing the parti­
cle density p. The unit of energy can be taken as 
(47r2/a2

) (koa/47r?, which turns out to be 

1 (koa) 
3 

h
2 

27r 2 2ma2 

if we call back the mass of the particle m (that has 
been set equal to !) and the Planck constant Ii. 

Finally, we notice that Eq. (2.10) holds in this 
case, too. In fact we see from Eqs. (8.1), (5.1), 
and (6.4) that 

(a/ap)(Eo/V) = J.I.(O) + JL O
). 

Sound Velocity 

Since the excitation of the Huang system is of 
phonon type, it is interesting to compute the sound 
velocity c from the energy-density relation, Eq. 
(8.1), and to confirm that the excitation with low 
momentum p actually has the energy quantum 

w(p) ::: cp (8.4) 

as suggested by Landau.31
•
33 Although the computa-

33 L. D. Landau, J. Phys. (USSR) 5, 71 (1940). 
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tion of 0 was done by Huang, we have to renew it 
because our functions involved, F l (II) and X, are 
slightly different from Huang's (see Footnotes 25 
and 30). 

The sound velocity is related to the compres­
sibility of the system, 

0
2 = -2 ap/ap, (8.5) 

where 

P = / (a/ap)(Eo/N) (8.6) 

is the pressure at absolute zero and we have taken 
into account that the mass of the particle has been 
put equal to t. Combining the above two, we have 

t.. = (~+!p~)Eo. (8.7) 4p ap 2 ap N 

The derivatives will be conveniently computed in 
terms of II: 

p = (A/II?, a/ap = -tA -V (a/all) 

A == ko/(161ra)i. 

Then, from Eq. (8.1) we obtain 

0
2 

= 1 61ra' p, 

(8.8) 

where a' is related to the excitation spectrum [Eq. 
(7.5)] to show the correctness of our anticipation 
(8.4). We see also that the condition for the srI-
stability, Eq. (7.7), is equivalent to the condition 
for the sound velocity to be real. 

Liquid State 

From Eq. (8.3), we see that the energy per particle 
behaves in the following way: 

~ ~ {81rap'H(pa
3
/1r)i(II ~ 0), (8.9) 

-47rbp (II --t ex». 

Thus, a minimum is reached at some II = ilL where 

a (Eo) d a
2 

(Eo) ap N = 0 an ap2 N > O. (8.10) 

If one wants to know the relation between ilL and 
the force parameters, it is convenient to rewrite the 
first condition in Eq. (8.10) as 

!!. 41r = 32! [(1 + 112)i - (1 + l)! 
a koa II 

+ ~ (1 + 112)5/2 - ! II - ~ /J (II = ilL)' (8.11) 
545 

We call the density PL corresponding to ilL the 
equilibrium density. The behavior of Eo/N is 
illustrated in Fig. 3 and the relation (8.11) in Fig. 2. 

Now, taking Eq. (8.10) into account, we know 
from Eq. (8.7) that, at the equilibrium density, the 
Huang system satisfies the srI-stability condition 
and therefore the k = O-stability condition as well. 
We can conclude that the consistency of our approxi­
mation scheme is thus guaranteed at least for the 
purpose of investigating the states in the neighbor­
hood of the lowest energy. 

Since we are considering the Huang system at the 
temperature absolute zero, it is quite natural that 
the system has an equilibrium density: In fact, 
it means the liquid state. If the volume containing 
it is fixed at such a value that N /V > PL, the system 
would first tend to expand when V is increased from 
this value. This is the state of compressed liquid. 
However, when V is made to increase further until 
the equilibrium density is reached, N /V = PL, the 
presence of the box becomes immaterial. Any further 
increase of V beyond this point leaves the energy 
and the density of the system unaffected; rather, we 
shall see the system lump in some part of the con­
tainer. This is the characteristic feature of a liquid. 
We have to conclude that the part of the energy­
density curve for II > ilL cannot be reached unless 
the system is heated. 

Stability Conditions 

In the above argument we have seen that the 
stability conditions are satisfied at the equilibrium 
point. Now, we want to show that the conditions 
are also satisfied by any state physically accessible 
at absolute zero. In other words, the conditions are 
always satisfied by the system with density 

P ~ PL' 

Then, the consistency of our approximation scheme 
will be confirmed also for the compressed state of the 
Huang liquid with the obvious reservation that the 
liquid should remain at low density, (pa3)! « 1. For 
this purpose, it is sufficient to rewrite the stability 
conditions as 

where the factor 16 in the curly bracket stands for 
the k = O-stability and 8 for srI-stability. Since we 
know that the above inequalities hold for II = ilL, 

we can conclude the stability for P > PL from the 
fact that the right-hand side of Eq. (8.12) is a de­
creasing function of II. Now, let II!;) (i = 1, 2) repre­
sent the critical densities which correspond to the 
sr- and k = O-instability respectively; namely for 
II > II!;) the corresponding instability occurs. In 
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Fig. 3, we present the boundaries of instabilities 
which are described by the points (p~i), Eo/N) when 
the force parameters are varied. The conditions 
(8.12) are shown in Fig. 2 together with the equi­
librium condition (8.11). 

IX. MATHEMATICAL BACKGROUND 

In the previous sections, we have seen that the 
replacement (4.2) can provide a consistent approxi­
mation scheme for the eigenvalue problem of the 
Huang model when the Bose-Einstein condensation 
is presumed. But, is the replacement (4.2) a neces­
sary consequence of the condensation presumption? 
Since we have been trying to find the lowest eigen­
state and its neighbors, it seems physically reason­
able to presume the condensation. However, it is 
not a priori obvious that there exists no other ap­
proximation scheme that would yield the lower 
eigenstates than the ones we obtained in our scheme. 

In this section, we want to present a mathematical 
background that would make the following state­
ment plausible, though not firmly established: The 
Bose-Einstein condensation necessitates the replace­
ment (4.2) when the system is infinitely large 
(N ~ CX». Here, the Bose-Einstein condensation in 
the interacting system is defined by the require­
ments (1) that the fiuctuation34 of the occupation 
number no of k = O-level is at most of the order of 
(no)!v and (2) that (no)av is the finite fraction of 
N tot , the total number of particles, when N tot ~ CX). 

For the more specific definition, see Eq. (9.19) be­
low. We have also to add that the above statement 
is the consequence of the irreducibility requirement 
for the representation of canonical commutation 
relations, which constitute our first subject. 

Representation of Canonical Variables 

The many-body system under consideration can 
be described by a Bose field, 

) "" ( V)-![ t -ikx + ikX] cp(x = L..J 2 ake ake, (9.1) 
k 

and its canonical conjugate 

'Ir(x) = L: i(2V)-![a:e-;kx - akeikX], (9.2) 
k 

where k = (2'1r/Vt)·n and n = (nx, ny, n.), nz = 0, 
±1, ±2, ... ,etc. They are self-adjoint and satisfy 
the canonical commutation relations 

[cp(f), 'Ir(g)] = i(f, g), (9.3) 

[cp(f), cp(g)] = ['Ir(t), 'Ir(g)] = 0, (9.4) 

If The fluctuation of no in the Huang model is computed 
in Appendix II. It is in fact proportional to (no)l/'.v. 

where 

cp(f) = J dx t(x)cp(x), 'Ir(g) = J dx g(x)'Ir(x), 

(f, g) = J dx f(x)g(x), (9.5) 

and the test functions, f(x) and g(x), are assumed to 
be real and E L2 , the first assumption being nec­
essary for cp(f) and 'Ir(g) to be self-adjoint and the 
second for (f, g), or more especially for I/tl/ = (f, f)t 
to exist. Later, we see the need to assume further 
I, g ELl. 

The representation is realized when we construct 
an appropriate Hilbert space .S) and define the 
action of cp(f) and 'Ir(g) therein. A well-known example 
is the Fock representation in which the Hilbert space 
is spanned by the eigenstates of a:ak belonging to 
the rational class of Garding-Wightman, 7 so that a: and ak serve as creation and annihilation opera­
tors, respectively. 

In order to explain the other way of constructing 
the representation, which is called the Gelfand 
construction,14 we introduce the Wightman func­
tional, 

E(t, g) = ('I', U(f)V(g)'I'), (9.6) 

where 'I' is a cyclic vector35 and 

U(t) = exp [iq.,(t)]' V(g) = exp [i'lr(g)]. (9.7) 

These operators are unitary and satisfy the following 
version of the commutation relations [(9.3) and 
(9.4)]: 

U(f)V(g) = V(g)U(t) exp [-i(t, g)], 

U(f)U(g) = U(f + g), V(f)V(g) = V(f + g). 

(9.8) 

(9.9) 

In terms of the Wightman functional, the com­
mutation relation (9.8) takes the form 

E*(f, g) = E( -f, -g) exp [-i(f, g)], (9.10a) 

and the others [Eq. (9.9)] are implicit in the defini­
tion of the functional. In addition to the obvious 
condition, 

E(O,O) = 1; 

it should satisfy the positivity condition 

L: A;AW(t; - ti' g, - gi) 
i,j 

X exp [-i(f; - fi' gi)] ~ 0, 

which says that any vector of the form 

lu) = L: A;U(f;)V(g.) 1'1') 
i 

should have a nonnegative norm. 

(9. lOb) 

(9.10c) 

35 We confine ourselves to a representation with cyclic 
vector. See Footnote 15. 
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Conversely, if a functional E(f, g) satisfies the 
conditions C9.lOa-c) it can be shown to define a 
representation of canonical commutation relations 
up to unitary equivalence. This is accomplished 
by the Gelfand construction. 

In the Fock representation, the Wightman func­
tional is given by9 

EFCf, g) = (01 UF(f)VF(g) 10} 

= exp [-lllfW -lllgW -!i(f, g)], (9.11) 

when we take the cyclic vector to be the vacuum 
10}. The field operators in this representation are 
denoted by ¢F(X) and 1I"F(X), 

The Case of Free Bose Gas 

Araki and Woods have constructed a representa­
tion suitable for describing the infinite free Bose gas 
under Bose-Einstein condensation. The necessity of 
constructing a representation other than Fock's has 
already been shown in Sec. 2 of this paper. 

They have begun with considering a free Bose gas 
of density p confirmed in a cubic volume V < <Xl. 

When we require the representation space to contain 
the ground state, it is natural to identify the cyclic 
vector '!r with the ground state itself. Thus, assuming 
the gas to be of temperature zero, they take the 
normalized state vector in which all the particles are 
found condensed in the k = O-level, 

1'!r(V)} = IN) == Ino = N, nk = 0 fork;>£ 0), (9.12) 

to compute the Wightman functional 

Ev(f, g) = (NI UF(f)VF(g) IN) (N = pV). (9.13) 

The point here is that, as far as N < <Xl, we can use 
the Fock operators UF(f) and V F(g) to represent the 
Bose field. 

Now, in order to obtain a Wightman functional 
that provides a representation of the infinite system, 
they take the limit V --7 <Xl keeping p = N IV con­
stant, to find36 

12.- da 
lim Ev(f, g) = E,,(f, g) -2 • 
V_w 0 ~ 

(9.14) 

This expression corresponds to Eq. (2.26) in Sec. 2 
with Eq. (2.27) taken into account. As has been 
explained there, the integral expression (9.14) means 
that the representation reached through the limiting 
procedure is reducible to a direct sum of represen­
tations labeled by 0', 0 ::; 0' ::; 211". In addition, 
Araki and Woods have ~hown that the new repre­
sentations defined by the integrand Wightman 

38 The explicit form of the integrand is given in Eq. (III.lO) 
in Appendix III. 

functionals E,,(f, g) can readily be related to the 
Fock representation. In terms of the Wightman 
functionals, it means that we have the following 
expression for the integrand of Eq. (9.14): 

(9.15) 

where U" and V" are obtained from those in Eq. 
(9.7) by replacements, 

¢(x) --7 ¢,,(x) == ¢F(X) + (2p)! cos 0', (9.16) 
1I"(X) --711" ,,(x) == 1I"F(X) + (2p)t sin 0'. 

Since the representation is fixed by the Wightman 
functional, we can conclude that the component 
representations in Eq. (9.14) is realized by using the 
operators, ¢,,(x) and 1I",,(x), together with the cyclic 
vector 10}. We have also to note that the irreduci­
bility of these component representations follows 
from the irreducibility of the Fock representation. 

Referring to the expansions of field operators 
[Eqs. (9.1) and (9.2)], one may notice that the rela­
tion (9.15) can, roughly speaking, be written as 

ak --7 a~ + (pV)'ei"ok.Ol (9.17) 

which is the replacement we have adopted in the 
previous discussions [see Eqs. (2.5) and (4.2)]. More 
precisely, we are to make the substitution (9.17) 
already in the case of finite system V < <Xl, where 
this procedure can be regarded as an unitary trans­
formation, and it does not matter which operator, 
the left- (ak means the Fock operator here) or 
right-hand side of Eq. (9.17), to use. When we go 
to the limit V --7 <Xl, the original Fock representa­
tion [left-hand side of Eq. (9.17)] becomes decom­
posable. If, however, we start with using the repre­
sentation on the right-hand side of Eq. (9.17), we 
can keep the irreducibility of the representation at 
V --7 <Xl. Moreover, the matrix elements of a~ do not 
grow up with V --7 <Xl. This last property can be 
conveniently used to construct an approximation 
scheme for the many-boson problems. 

The convergence of the "Hamiltonian" in this 
limiting procedure can be discussed in the same way 
as in the fermion case treated before. 12 

In conclusion, we have to go through the following 
process if we want to take an irreducible representa­
tion to describe an infinite free Bose gas: Make the 
replacement (9.17) first and then let V --7 <Xl after 
computing the quantities of physical interest! 

The Case of Interacting Bosons 

We now proceed to the consideration of the case 
of interacting bosons. The point is to replace the 
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free-particle ground state (9.12) by a superposition 
of states in which some of the particles are brought 
into the excited states by the interparticle interac­
tion. Though the model employed here is a little too 
simple to simulate the realistic model of Huang, it 
would serve to indicate what could happen in the 
limit of infinite system. 

We compute the Wightman functional by taking 
a normalized cyclic vector of the form 

1'It(V) = L IN - v) W')(V), (9.18) , 

where N - v is the number of the k = O-particles 
[see Eq. (9.12) above], 1'It('» represents the state of v 
particles which are excited to the k s= 0 levels by the 
interaction, and L, 11'It(') (V)W = 1. The reason 
why we assume the vector 1'It(V) to be of sharp 
particle number is that it is intended for the ground 
state in a finite volume V. The nonconservation of 
the particle number can take place only when 
V~ex:>. 

In the case of the Huang model, we find in Ap­
pendix 2 that the fluctuation of the number of the 
k = O-particles, no = N - v, is of the order of Nt. 
It seems reasonable to take this property as the 
definition of the Bose-Einstein condensation in the 
interacting system together with the obvious prop­
erty that the average number (N o)av ~ N is macro­
scopic (proportional to the volume V). In order to 
simplify the discussion, however, we have to assume 
thae7 

Iw(')(V» = 0 unless v::; aNi-! (9.19) 

with some positive numbers, q and o. We hope that 
it will be meaningful to take the limit 0 ~ 0 after 
the whole computation. 

Now, our task is to compute the Wightman func­
tional first for a finite V, 

Ey(f, g) = L (N - IL; 'It(~>CV)1 
p.> 

x UF(f)VF(g) IN - v;'It(')(V), (9.20) 

and then to examine what representation of field 
operators comes out in the limit V ~ ex:> with p = 
N IV kept constant.as Because of the assumption 
(9.19), the summation over (IL, v) can give an infinite 
series when N ~ co. Instead of taking the limit 
V = Nip ~ co of Eq. (9.20) as a whole, we shall 
simply assume that the same limit can be reached 

a7 The generalization to the case of a = 0 is discussed in 
Appendix III. 

28 The same sort of argument was used to construct the 
representation for the BCS model of a superconductor. See 
Ref. 12 and R. Haag, Nuovo Cimento 25, 287 (1962). 

through the following two-step procedure: 

lim Ey(J, g) = lim L(y,) lim (N - ILj 'It(JA)(V)! 
v-co V'_co p.." V-Q) 

In this paper, we do not want to enter the discussion 
of this conventional procedure but just to assume its 
validity. The mathematical details will be discussed 
elsewhere. 

By introducing the Fourier transform 

j(k) = I
y 

dx f(x)e ikx
, (9.22a) 

and a conventional notation 

(9.22b) 

we can easily see that 

UF(f)VF(g) = EF(J, g; V) : UF(f)VF(g) :, (9.23) 

where 

x IT exp [{ijy(k) + yy(k)}ak], (9.24) 
k 

is the normal product and the notation EF(J, 9; V) 
will be self-explanatory. In particular, 

lim EF(f, gj V) = EF(J, g), (9.25) 
y~", 

with the right-hand side being given by Eq. (9.11). 
Accordingly, the matrix elements in Eq. (9.21) can 
be split into three factors; 

(N - ILj'lt(~)(V)! UF(J)VF(g)!N - Vj'lt(')(V) 

= EF(J, g; V)·(N - ILl : UF(f)V F(g) : IN - II) 

·<'It(~)(V)! : UF(J)VF(g) : !'It(')(V». 

The first factor can be absorbed by the third: 

(N - IL; 'IJ!(~)(v)1 UF(f) V F(g) IN - v; 'It(')(V) 

= (N - ILl : UF(J)VF(g) : IN - v) 

·('IJ!(~)(V)I UF(f)VF(g) 1'It(') (V). (9.26) 

We shall see in Appendix III that, under the 
assumption (9.19) we have 

lim (N - ILl : U F(f) V F(g) : IN - v) = 12
" ei(,-p) '" 

V_CD 0 

X exp [i(2p)t {f(0) cos a + yeO) sin a}] ~:. (9.27) 

This formula will play a central role in the present 
analysis. Then, the Wightman functional (9.20) can 
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be written as 

. 12r 

~ hm Ev(f, g) = E,,(f, g) 2 ' 
V-m 0 r 

where 

E,,(f, g) = 2a(f, g) 

X exp [i(2p)i {J(O) cos a + /1(0) sin a lJ 
with 

(V') 

2,,(f, g) = lim L ei(o-I')" 

v'_co jJ.JI 

(9.28) 

(9.29) 

One should notice that Eq. (9.28) is of the same 
form as Eq. (9.14) for the free bosons. If we show 
that Ea(f, g) describes a representation of canonical 
variables, then we can conclude therefrom that the 
infinite volume limit of the sharp-particle number 
representation is decomposable in the case of the 
interacting bosons, too. 

It is convenient to begin our argument with the 
proof that 1£a(f, g), the first factor on the right-hand 
side of Eq. (9.29), provides a cyclic representation 
of canonical pair of field operators. Namely, the 
functional shall be proved to define a pair of field 
operators, cPa(x) and 7ra(x), together with a cyclic 
vector ~ a such that 

(~al Oa(f)Va(g) Iq,a) = 1£a(f, g), (9.31) 

where 0 a and Va are constructed from cPa(x) and 
7r" (x), respectively. 

Now, according to the Gelfand construction of 
the representation,14 the desired proof is accom­
plished if we show that the Wightman functional 
2,,(f, g) satisfies the conditions (9.lOa-c). Let us 
introduce a vector 

(V) 

I~ a(V» == L e,oa Iv(P) (V»; (9.32) 

then 

1£a(f, g) = lim (~a(V)1 UF(f)VF(g) l~a(V». (9.33) 
v~'" 

The point of our proof is to refer to the fact that the 
functional 

for V < co satisfies the above three conditions in an 
obvious way. In fact, we can prove the commutation 
relation (9.lOa) by recalling the properties of the 
Fock operators, 

2!(f, g) = lim (~a(V)1 V;(g)U;(f) l~a(V» 
v~'" 

= lim (q,a(V)1 VF(-g)UF(-f) l~a(V», (9.34) 
v~'" 

and their commutation relation (9.8). The condition 
(9.lOb) is obvious. Finally, it is clear that the posi­
tivity condition (9.lOc) is satisfied by 

(q, a(V) I U F(f) V F(g) I~ a(V» 

because the finiteness of V guarantees it to describe 
the Fock representation. Then, going to the limit 
V ~ co, we find that the positivity condition is in 
fact satisfied by 2a(f, g). This concludes the argu­
ment that the functional 1£,,(f, g) defines a repre­
sentation of canonical commutation relations. 

We now turn to the complete functional Ea(f, g), 
which carries an additional exponential factor related 
to the zero-momentum operator; see Eq. (9.29). It is 
not difficult to prove that this functional satisfies 
the canonical commutation relations, etc., when 
reference is made to the corresponding properties of 
1£a(f, g). But, the shortest way is to borrow the 
cyclic vector I~a) and the field operators, cPa(x) and 
7r a (x), from the above representation. In fact, the 
new representation defined by E a (I, g) is readily 
realized when we take the cyclic vector and the 
field operators to be I~ a) and 

CPa(x) = cPa(x) + (2p)! cos a, 
(9.35) 

11" a (x) = 11- a (x) + (2p)7 sin a, 

respectively. This procedure of generating a new 
representation from an old one is the same as Araki 
and Woods have adopted in the case of free bosons. 
In particular, Eq. (9.35) corresponds exactly to 
Eq. (9.16). Then, Eq. (9.28) tells us that the repre­
sentation defined for an infinite system by 

lim Ev(f, g) 
v~'" 

is decomposable into the direct sum of representa­
tions realized by the operators in Eq. (9.35) together 
with the cyclic vector I -$,,). Whether or not the 
latter representations are further decomposable con­
stitute a different question, to which we will come 
back later. 

Now, we have to emphasize that the zero-mo­
mentum part of 1£a(f, g) is the same as that of 
EF(f, g). In fact, the cyclic vector ~ a(V) has no 
particle in the k = O-level. From this observation, 
we can conclude that the matrix element of the 
zero-momentum creation, annihilation operators, 
a~o and aaO, of cPa (x) are not macroscoFlic. The defini­
tion (9.35) tells us then that the corresponding opera-
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tors, a~o and a"o, of cf>,,(x) have just the same char­
acter as those operators in the previous sections have. 
Namely, 

(9.36) 

and the matrix elements of ilao are not macroscop­
ically large. 

It should be noticed here that, under the assump­
tion (9.19) the density of the k = O-particles is 
equal to the total density at V ~ <Xl. 

Some remarks are in order about the representa­
tion defined by ~,,(f, g). In the special case of (j = 0 
in Eq. (9.19) we have ~,,(f, g) = EF(f, g) coming 
back to the Fock representation. Even when (j > 0, 
the functional defines the Fock representation if 
and only if the strong limit V ~ <Xl of Ii" (V) > exists 
in the Fock space. If this is the case, then $,,(x) = 
cf>F(X) and ;r,,(x) = 7I"F(X) and therefore the repre­
sentation is irreducible. 

In the realistic model of Huang, however, we can 
show that the limit V ~ <Xl of the ground state does 
not exist in the Fock space even when we take care 
of the Bose-Einstein condensation by the "e-number 
addition." Therefore, the representation cannot be 
Fock's. We have good reason to suspect that the 
representation of {$,,(x), ;r,,(x)} is decomposable 
when we remember that the "finite temperature 
case" of Araki and Woods provides an example in 
which the representation of the operators corres­
ponding to our {$" (x), ;r" (x)} is in fact decomposable. 

In the previous sections, we have not differentiated 
{$,,(x), ;r ,,(x)} from {cf>F(X), 7I"F(X)} using a common 
notation a~ for the annihilation operators, for 
example. The reason for this is that we have been 
only emphasizing the fact that the matrix elements 
of 0"0 are not macroscopic at V ~ <Xl. The "e­
number addition" or the replacement such as in 
Eq. (9.35) is the characteristic feature of the macro­
scopic occupation of the k = O-level (Bose-Einstein 
condensation) regardless whether the particles are 
interacting or not. We have to keep in mind that the 
argument in this section is limited to a fictitious 
model and therefore the study of a realistic case is 
left for the future investigation. 

In conclusion, we have seen in this section that 
the "e-number addition" is a necessary step when 
one wants to get an irreducible representation for 
some39 systems (and probably for any system) under 
Bose-Einstein condensation. This is the mathe­
matical background we can give at present to the 
replacement (4.2). 

39 We are referring to the assumptions of Eq. (9.19) and 
of the validity of the limiting procedure in Eq. (9.21). 

X. DISCUSSION 

First, let us summarize the main results of this 
paper. 

We have investigated the behavior of the Huang 
model near the ground state by applying the quan­
tum mechanical adaptation of the method of small 
oscillation. Here, oscillation refers to the fluctuation 
of the number of the k = O-particles which are in the 
state of Bose-Einstein condensation. 

It has been found that, in some range of the 
particle density and the parameters of the inter­
particle force, the oscillation is unstable. On the 
assumption that the oscillation is stable and has 
small amplitude, we have computed the total energy 
of the system as a function of the particle density. 
The total energy has been found to have a minimum 
at some density PL' What is important is that the 
density PL lies in the region where the above-men­
tioned oscillation is actually stable. In the physically 
accessible range of the density P > PL, the oscilla­
tion is found to be always stable and its amplitude 
not macroscopically large. 

This result shows that the Huang model can be 
treated without any serious error by the Bogoliubov 
approximation in which the fluctuation of the con­
densed particles is neglected. In general, our method 
can provide the validity criterion of the Bogoliubov 
approximation. By the use of our method, we can 
estimate the errors committed by the Bogoliubov 
approximation. It will be interesting to apply our 
method to the model recently discussed by Foldy 
and Bassichis. 

In addition to the excitation spectrum that Huang 
obtained, we have found a new one related to the 
fluctuation of the condensed particles [see Eq. 
(6.15b)]. The excitation energy of such fluctuations 
cannot be neglected when we take into account the 
phonon mode of Sl'I-particles, because they are 
comparable in orders of magnitude. 

Within these arguments, it is not quite clear 
whether or not the ground state obtained by our 
method is really the state of the lowest energy. When 
we tried to answer this question, we have been led 
naturally to a consideration of the limit of an infi­
nitely large system. Taking advantage of the phys­
ically plausible assumption that the lowest energy 
should be attained by the state of Bose-Einstein 
condensation, we have tried to formulate a mathe­
matical reasoning for the inevitability of our method. 
We have analyzed the representations of canonical 
variables to be applied to some models which are 
intended for simulating the Huang model. So far as 
these fictitious models are concerned, we have 
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established the statement that, in the limit of infi­
nitely large system, it is imperative to use the method 
of small oscillation if the system is in the state of 
Bose-Einstein condensation. 

Some further investigation is necessary to general­
ize this statement so as to apply the Huang model. 
First of all, we have to analyze the state vector of 
the Huang model in more detail: We have to see the 
structure of the sharp-particle-number ground state 
to attain the better simulation. In order to discuss 
the limit of infinitely large system, we have to 
analyze the limit Wightman functional. We have 
seen in the text that the infinite volume limit of the 
ground state of Huang model does not exist within 
the Fock representation even if the Bose-Einstein 
condensation is properly managed. This difficulty 
will be resolved in a natural way when we obtain the 
representation of the canonical variables suitable in 
the infinite system. These mathematical problems 
are left open for the future investigation. 

The question of the higher excited states will be 
interesting both from physical and mathematical 
point of view. The physical part would not be so 
difficult. Anyhow, this is also an open question. 
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APPENDIX I. THE BOGOLIUBOV 
TRANSFORMATION, ETC. 

When we want to diagonalize the operator, 

3C = Pa:a~k + Q(a:ak + a~ka_k) + Paka-k. (1.1) 

we have to treat the cases Q2 - p2 > 0 and 
Q2 _ p 2 ~ 0 separately. 

A. Q2 _ p2 > 0 

In this case, the operator 3C can be diagonalized by 
the Bogoliubov transformation (k can be equal to 0), 

(1.2) 

to be 

where 

Wk = ±2(Q2 - p2)t, Ck = ±(Q2 _ P2)t - Q, (1.3) 

with the upper and the lower signs referring to the 
cases Q > 0 and Q < 0, respectively. Due to the 
presumption Q2 - p2 > 0, the case of Q = 0 is 
excluded. The angle Ok can be determined by some 
of the following relations. The sign convention is the 
same as above: 

tanh Ok = [Q =r= (Q2 _ p 2)i]/p, 

cosh Ok sinh Ok = ±!P /(Q2 - p2)i, (1.4) 

cosh2 Ok + sinh2 Ok = ±Q/(Q2 _ p2)i. 

For a while we assume k ~ O. Then, the trans­
formation (1.2) is generated by 

CU(Ok) = exp [Ok(A k - A:)] (1.5) 
as 

bk = ak cosh Ok + a~k sinh Ok 

= cu( Ok)ak cut (Ok)' (1.6) 

The operator Ak satisfies the following commuta­
tion relations: 

where 

For the sake of convenient reference, we note the 
ordering theorem 

CU(Ok) = exp [-A; tanh Ok] exp [-Bk log cosh Ok] 

X exp [Ak tanh Ok] = exp [Ak tanh Ok] 

X exp [B k log cosh Ok] exp [-A: tanh Ok]' (1.8) 

In order to prove the first relation, for example, we 
put 

CU(Ok) = exp [A:f(Ok)] exp [Bkg(Ok)] exp [Akh(Ok)], 

and require it to satisfy the same differential equa­
tion and the same initial condition as CU(Ok) in 
Eq. (1.5) does: 

(d/dOk)CU(Ok) = (Ak - A;)CU(Ok)' CU(O) = 1. 

Then, we obtain simultaneous differential equations 
for three unknowns I(Ok), g(Ok), and h(Ok)' These 
can easily be solved to lead us to Eq. (1.8). 

In the case of k = 0, we have to change the nota­
tion, 

(L9} 
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so that the commutation relations take the same 
form as those in Eq. (1.7). Then, we see that Eqs. 
(1.5), (1.6), and (1.8) also hold for k = O. 

B. Q2 _ p2 :$; 0 

In this case, it is more convenient to use a con­
tinuous representation in terms of 

2_"( t) Xk = t ak - ak , 

Pk = 2-'(ak + a:) 
(1.10) 

which obey the canonical commutation relations 
for the coordinates and their conjugate momenta: 

(Xk' Pk'] = i5k ,k" 

[Xk, Xk'] = [Pk, Pk'] = O. 

Then, the operator :Ie [Eq. (1.1)] becomes 

:Ie = PPkP-k + !Q(P~ + P:'k) 

- PXkX-k + !Q(x~ + X:k), (1.12) 

which can be cast into a normal form of harmonic 
oscillator Hamiltonian by the following canonical 
transformation 

~k+ = 2-'(Xk + X-k), 11k+ = T'(Pk + P-k), 

~k~ = 2- i (Pk - P-k), 11k- = -2-'(Xk - X-k). 
(1.13) 

t'S stand for the canonical coordinates and 11'S for 
their conjugate momenta. In fact, these operators 
satisfy the canonical commutation relations 

[h-, 11k-] = i, [h-, h+] = 0 etc., 

and we have 

:Ie = !(Q + p{ 11!+ + ~ ~ ~ t!+ 

(1.14) 

of the number no = a~ao of the k = O-particles in 
the vacuum \no) of the operator bo, when the follow­
ing transformations are made: 

ao = a~ + Nl 

followed by 

a! = bo cosh 00 - b~ sinh 00 , (11.2) 

The computation can be carried out in the same 
way as in Eq. (6.3b). We get 

(nol no Ino) = N + sinh2 00 , 

(no\ n~ \no) = (N + sinh2 
00)2 

and therefore 

(~no)2 = (cosh 00 - sinh Oo?N + 0(1), 

(11.3) 

(II.5) 

where we have assumed that cosh 00 and sinh 00 are 
of order 1 (when N ~ (X»). We find that the fluctua­
tion is proportional to Nt. 

In the same way, we can compute the fluctuation 
of the total number of the k ~ O-particles finding 
again that it is proportional to Nt. 

The models in Sec. 9 are the abstraction from 
these results. 

APPENDIX III. DECOMPOSITION OF 
limN-+<D (N - p /: UF!j) VF(g) :/ N - I) 

To begin with, we consider the case p. ~ v. It is 
easy to get 

(N - p.1 UF(f)"VF(g) IN - v) 

= [(N - v)!]l(-z)'-"L('-"'( zz) 
(N - p.)! Nt N-, Vi ' (IlL I) 

where 
2 Q - P 2 ] + 11k- + Q + p h- . (1.15) z = (!p)l[g(O) + ij(O)], (J(O) , g(O): real) (IIL2) 

This form will be convenient for treating the case 
Q + P > 0, which we assume hereafter. 

Now, we see that, if Q - P = 0 then:le describes 
two "free particles" and if Q - P < 0, then:le des­
cribes two "harmonic oscillators" with the potential 
functions concave downwards. In any case, the 
spectrum of :Ie is continuous and the wavefunction 
not normalizable. 

APPENDIX n. THE FLUCTUATION OF THE 
PARTICLE NUMBER 

As a preparatory step to the construction of a 
mathematical model in Sec. 9, let us compute the 
mean-square fluctuation, 

(~no)2 == (nol n~ Ino) - [(nol no Ino)y, (11.1) 

z = (!p)l[g(O) - ij(O)], 

and L~) (x) is the associated Laguerre polynomial: 

L ('-I',(zz) 
N-, N 

N-, ( -1)' (N - It)! (zz)' 
= ~ r!(v - p. + r)! (N - v - r)! N . 

(II 1.3) 

Now, we proceed to take the limit N ~ (x). For a 
while, we assume the condition (9.19) with 5 > o. 
Then, we have 

(N - v)!/(N - p.)!] i,...., N -i('-'" (N ~ (X». (lIlA) 

Also, as is shown at the end of this Appendix, the 
factorials under the summation (II1.3) can be 



                                                                                                                                    

QUANTUM MECHANICS OF MANY-BOSON SYSTEM 403 

approximated as 

(N - p.)lj(N - I' - r)!""'" N·-~+r (N ~ (X). (IIL5) 

Thus, we get 

lim (N - p.1 : UF(f)VF(g) : IN - v) 
N-", 

The functional for the free Bose gas can be ob­
tained as a special case when we put p. = I' = 0 and 
switch the normal product into the ordinary one thus 
recovering EF(f, g) [see Eq. (9.23)]: 

1
2.. d 

lim(NI UF(f)VF(g) IN) = E,.(f, g)2
a

, (IIL9) 
N_aJ 0 7r 

= (~~i)'-I' J(2[zz)1) (p. ~ )/), (111.6) where 

where J .. (x) is the Bessel function 

fx)" '" (-1)' (x)2r 
J .. (x) = \2 f,; r!(n + r)! "2 • 

Now, by the use of the relation 

[(N - p.1 UF(f)VF(g) IN - v)]t 

= (N - 1'1 VF(-g)UF(-j) IN - p.) 

= (N - 1'1 UF(-j)VF(-g) IN - p.) exp [i(f, g)], 

which follows from Eq. (9.8) and the self-adjointness 
of the Bose operators, we can conclude that Eq. 
(III.6) holds also for p. ~ v if we notice 

J_ .. (x) = (-I)"J .. (x), (n: integer). 

In order to attain the decomposition, we notice 

:x [; .. J .. (x) ] = - ; .. J .. +1(x), (n ~ 0) 

and the integral representation of Jo(x), 

12,. . --' da 
Jo(2[zz]i) = 0 exp [ze"" - ze U] 2'11" (IIL7) 

Then for n ~ 0, 

(~z~;)"J .. (2[ZZ]i) = (:z)"Jo(2[zZ]i) 

12.. i.... [iIX _ -'''] da = e exp ze - ze -. 
o 2'11' 

The case of n = -m < 0 can be dealt with as 

(~~t r'" J _m(2[zz]i) = ([Z~]tr J m(2[zz]i) 

= (-:z)",Jo(2[zZ]i). 

Therefore, referring to the integral representation 
of Jo(x), we obtain 

lim (N - p.1 : UF(f)VF(g) : IN - v) 
N-", 

12 ... (>-1')" ['''' _-ia]da = e exp ze - ze -. 
o 2'11' (IIL8) 

This is the desired result, Eq. (9.27). 

E",(f, g) = EF(f, g) 

X exp [i(2p)t{J(O) cos a + (l(O) sin aJ]. (111.10) 

Now, we have to show the validity of the approxi­
mation (III.5). Let's consider the case of (N - p.)! 
first. If p. ~ (TNi- 6 as assumed in Eq. (9.19), then 
the Stirling formula tells us that 

log (N - p.) I = (N - p. + !) log (N - p.) - (N - p.) 

+ ! log 2'11' + OG,) = (N - p. + !) log N 

- N + ! log 2'11' + ~ + oG,), (III. H) 

where we have made use of an approximation 
log (1 - [!-lIND = -!-lIN + 0(lIN2

). The reason 
why we assume ~ > 0 is that the term liN can be 
neglected at N ~ (x). Thus, 

(N - !-I)! (2'11'N)k NN N
-.( 1 + 0[;26 J). (III. 12) 

In order to apply the same argument to (N - v - 'Y) I, 
we have to confirm the inequality v + 'Y ~ 
«T + (T')Ni- o for some positive number (T' by showing 
that the series (III.4) gets a negligible contribution 
from the sequence of terms beyond ro, r ~ ro with 
ro == (TINt-a. To begin with, we show that the se­
quence in the series (III.4) is of monotonic decrease 
for ro~r~N -v and for a sufficiently large N. In fact, 

I(r + 1)th terml 
rth term 

< 1 zz 
- (ro + 1)(1' - P. + ro + 1) N ' (IILI3) 

and the right-hand side becomes smaller than one for 
large N. The contribution from the roth term can be 
computed by the use of the Stirling formula. It is 
inversely proportional to something like NHth 
power of N, or more precisely, 

1 (N - p.)J ( zZ)ro 
rol(1' - p. + ro)! (N - I' + ro)! \it 
,....., exp [{ -2(T'(! - ~)NH + (! + ~)(v - p.)} log N]. 

(IILI4) 
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Thus, we see that the total contribution from the 
terms with ro ::; r ::; N - v vanishes quicker than 
Eq. (IILI4) X N does as N -7 <Xl. This is the desired 
result. 

We close this Appendix by mentioning what hap­
pens if 0 = 0 is assumed. If so, we must keep liN 
in Eq. (IlI.ll) and therefore we have 

(N - JL)! = (27rN)!NN-~ exp [-N + (JL2 IN)] (IIT.15) 

in place of Eq. (IILI2). In the series (lIlA), we can 
still neglect the terms with ro ::; r ::; N - v. For 
r < ro, we have 
(N - p - r)! = (27rN)!NN-.-r exp [-N + (p2IN)]. 

Thus, the correction to (IlL5) is independent of r: 

(N - JL)l/(N - p - r)! 
'"'-' N·-~+r exp [- (p2 - JL2)IN]. (III.16) 

Also, we have 

[(N - p)l/(N - JL)!]~ 
'"'-' N-t('-~) exp [+!Cp2 - Il)IN]. (IILI7) 

These equations are used in the case of JL ::; v. In 
general l - JL2 in the above must be replaced by 
IJL2 -ll. Therefore, Eq. (IlLS) must be replaced by 

lim (N - JLI : UF{f)VF(y) : IN - v) 
N_oo 

= [rhsofEq. (IIL8)]·exp [-lp2 -ll/(2N)], 
(IlLI8) 

and Eqs. (9.28)-(9.30) should be corrected accord­
ingly. 

Now, the reason why we avoided this case of 
o = 0 in the text is that the positivity condition is 
difficult to prove. In fact, if we adopt Eq. (IlU8) we 
cannot put Ea{f, y) in the form of Eq. (9.33) on which 
we have been relying in proving the positivity condi­
tion. It should, however, be noticed here that, if it is 
meaningful to take the limit 0 -7 0 after the whole 
computation, the positivity of the 0 = O-Wightman 
functional follows from the positivity of the 0 > 0-
functional. 
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Dynamics of a Simple Many-Body System of Hard Rods 

D. W. JEPSEN 
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General formulas are given for the exact calculation of the nonequilibrium properties of the one­
dimensional system of equal-mass hard rods both for a finite but large system and in the limit of 
infinite size. Only properties which depend upon labeling one or more of the particles are nontrivial 
in this system. Various results are obtained on Poincare cycles, delocalization of a particle with time 
and electrical conductivity when one particle is charged. 

INTRODUCTION 

I N order to understand the dynamical behavior 
of systems containing a large number of particles, 

it is important to have a number of sample systems 
in which the dynamical equations can be handled 
exactly. We give here a study of Poincare cycles, 
pseudostochastic behavior, and nonequilibrium prop­
erties of the one-dimensional hard-rod system, which 
is perhaps the simplest model that can be considered. 
Some of the simpler properties have been considered 
previously by Frisch and others.l The other studies 
of this type in the literature that we have seen are 
restricted to various harmonic oscillator assemblies, 
and we feel that a study of a system whose mechanics 
are not based on the theory of normal modes should 
be important for contrast, in spite of the fact that 
it is less physical than these other models. 

The discussion of many ergodic properties in this 
system is quite convenient. We also obtain some 
results on Poincare cycles not really restricted to 
this system and compare them with other known 
results. It appears to be possible to calculate almost 
any desired property of this system, although, of 
course, some calculations are messy. Unfortunately, 
most of the most interesting properties of real 
many-body systems are both degenerate and un­
typical in this system. However, the Brownian­
motion-like path of a given particle appears to be 
one property that does bear attention. 

DESCRIPTION OF THE DYNAMICS OF THE SYSTEM 

We consider N point particles, all of the same 
mass, constrained to move along a line like beads 
on a string. The particles do not penetrate each 
other, so that they retain their ordering along the 
line. When a pair of particles collide, their energy 
and momentum are conserved so that they merely 
exchange velocities. We assume that there are no 

1 H. L. Frisch, Phys. Rev. 104, 1 (1956); E. Teramoto and 
C. Suzuki, Progr. Theoret. Phys. (Kyoto) 14, 411 (1955). 

three-body collisions or that they are so improbable 
as to have negligible effect during the time in which 
we are observing the system. This can be achieved 
by assuming hard-sphere or other very sharp repul­
sive forces between the particles and negligible 
attraction. We assume, as stated above, that the 
particles are mass points; the same procedure can 
also be used for particles of finite size simply by 
subtracting off the distances of closest approach 
from the interparticle distances and relating these 
new distances to the mass-point model. If the system 
has periodic boundary conditions, as we assume in 
this work, this equivalence is not quite exact be­
cause after these new distances are introduced, the 
center of mass of the system (to the extent that it 
can be defined) should still move in a box of the 
original size. 

In order to follow the dynamics of the system 
in complete detail we make use of the following 
trick. We plot the positions of the particles versus 
time as shown in Fig. 1. If no collision occurs, the 
motion of one of the particles is represented by a 
straight line, or "trajectory", starting on the X 
axis at the initial position of the particle, and with 
a slope equal to the reciprocal of its velocity. When 
a collision occurs, two of these lines cross, and since 
collisions are elastic, the two particles merely ex­
change trajectories. Neither trajectory is changed 
in direction. This makes the dynamics of the system 
simple to follow; we need only keep track of which 
particle is on each line in the diagram at any given 
time. 

To this end, we number the particles and the 
trajectories. We pick one of the particles, number 
it zero, and put our origin of coordinates at the 
position of this particle at the initial time. We 
number the rest of the particles 1, 2, ... , N - 1, 
starting with the neighbor to the right of particle 
zero, and continuing from left to right. Since one 
particle never passes through another, this ordering 
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FI<'l. 1. Diagram show­
ing the nature of the 
dynamics of the system. 

is maintained for all time. We give each trajectory 
a number equal to the number of the particle 
occupying it at the initial time. 

We now define A;k(t) to be equal to one if particle 
j is on trajectory k at time t and to be zero other­
wise. A knowledge of A jk(t) for each j and k con­
stitutes a complete solution of the dynamics of the 
system in a very convenient form. If, instead of 
studying a single system, we form an ensemble over 
the initial conditions, the average (Ajk(t» of Ajk(t) 
becomes the probability that particle j is on tra­
jectory k at time t. 

Since the particles remain in the same order 
around the ring (we assume periodic boundary 
conditions), it is possible to determine which par­
ticle is on a given trajectory simply by counting 
how many trajectories have crossed this trajectory 
from each side up to the given time. Each time a 
trajectory crosses it from the right, the particle on 
the given trajectory at this time is replaced by its 
neighbor to the right, which is numbered one higher. 
Similarly, after a collision from the left, the number 
of the particle on the trajectory is decreased by 1. 
Notice that this is true independent of the history 
of each of the trajectories involved. We shall refer 
to a collision from the left as a "negative" collision. 
As a result of these considerations we find that after 
trajectory k has been crossed n times by other 
trajectories (in the special sense where the number 
of negative crossings is subtracted), it will) be 
occupied by particle number k + n. In this discus­
sion particle zero is the particle with number one 
larger than N - 1 and N - 1 is one smaller than 
zero, i.e., we must count the particles modulo N. 

We now show how these considerations can be 
used to calculate the Ajk(t)'s. We define fn(h, k, t) 
to be equal to 1 if trajectory h crosses trajectory k 
exactly n times between the initial time and time t , 
and to be zero otherwise. The number n can be 
positive, negative, or zero. If we average f" over an 

en.:'~mble of ini~ial conditions, Tn will give the prob­
abillty that traJectory h crosses trajectory k a total 
of n times. Next we define the characteristic func­
tions for the probability distributions, 

co 

8(U; h, k, t) == L: fn(h, k, t)e inU
• (1) 

In terms of these quantities, Ajk(t) is given by 

1 N-l [2' ] 
Ajk(t) = N t; exp -; (j - k)l 

(27rl ) (27rl ) X 8 N ; 0, k, t 8 N ; 1, k, t 

x 8(;/ ; 3, k, t) ... 8(;/ ; N - 1,rk , t) 
with 

8(U, k, k, t) == 1. (2) 

To show this, we replace the 8'S by the sums 
containing the f,,'S and use the fact that 

L E exp [_ 27ri nlJ = 1 n = 0 (mod N), 
N 1-0 N (3) 

o otherwise; 

co [1 N-J {2' 
A jk = no.n'~.-co N t; exp ;)cn:i+ n1 

+ ... nN-l - J' + k)}Jr r ... f (4) 
n() n1 nN-l-

We state the argument in terms of probabilities 
sin~e a single system is actually a special case i~ 
whlCh the probabilities are either zero or one. If 
the expression in the brackets is left out for the 
m~~~nt, the resulting sum adds together the prob­
abllItIes of all the possible combinations of crossings 
~~i?h ~rajectory. k could undergo between! the 
llltlal tlme and tlme t. Putting in the expression in 
brackets restricts the summation to those combina­
tions which put particle j on trajectory k. The sum 
of these probabilities is just Ajk(t). 

The expression for 8(U; h, k, t) to be used in this 
equation takes two forms depending upon whether 
h is greater than or less than k. If particle h starts 
to the right of k, 8 can be written in the form 

8(U; h, k, t) =~S[u, Wkh], k < h, (5) 

with 

S[u, wl = einu when (n - I)L < w :::; nL 

for each n (6) 

and 
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where x, and Vi are the initial position and the 
velocity of the ith trajectory. If h starts to the left 
of k we have 

s(u; h, k, t) = e-i"S[u, Wkh], h < k. (8) 

In terms of S, Eq. (4) becomes 

1 N-l 

A jk = N L: exp [-iju] II S[u, W kh ] 
u A-O 

with 
N-l 

and L: = E· (9) 
1=0 

We note that S satisfies the equation 

S[u, W + L] = ei"S[u, w]. (10) 

Since exp [iu] is always taken equal to one of the 
Nth roots of unity, S[u, w] is periodic in w with 
period NL. 

Unfortunately the fact that the dynamics of the 
system are so simple makes most of the charac­
teristics important in the usual many-body sys­
tems trivial and degenerate in this one. For example, 
the velocity distribution does not change with time 
since there is always one particle with each of the 
initial velocities. More generally it can be stated 
that the only properties of this system that will be 
interesting are those which depend upon attaching 
labels to one or more of the particles. If the particles 
are not distinguishable we may treat the system 
more simply by allowing them to exchange identities 
during collision, which in turn is equivalent to allow­
ing them to pass through each other without inter­
action. Hence in this case we may expect the same 
results as for a noninteracting gas. 

CALCULATIONS WITH A FIXED SET OF 
INITIAL CONDITIONS 

Although we cannot study the approach of the 
velocity distribution toward equilibrium we may 
assume that the velocities at the initial time have 
already been randomized by some otherwise un­
considered process such as three-body collision and 
study randomization in configuration space. This 
is of some interest even for noninteracting gases. 
The procedures illustrated first on the noninteracting 
gas will later also be applied on properties of the 
hard-particle system. 

It is convenient to make the assumption that 
the velocities of the N particles satisfy no relation 
of the form 

N-l 

EniviL = 0, (11) ,-0 

where the nis are positive or negative integers with 
perhaps some, but not all, of them zero. When this 
assumption is fulfilled we may apply a theorem due 
to Kronecker and Weyl to calculate time averages 
of various properties of this system following the 
procedure used by Montroll and Mazur' for a 
harmonic oscillator system. By the time average 
expectation we mean the expectation 

(f[xo(t) ... XN-l(t)]) 

1 iT = lim -T f[xo(t)· .. XN-l(t)] dt 
T_oo 0 

(12) 

with Xi(t) = Xi + Vito The Kronecker-Weyl theorem 
states that if a bounded Riemann integrable function 
of N variables, f(xo ... XN-l), is periodic in each 
argument with period 271' and if the previously 
stated assumption holds then 

1 iT lim -T f dt 
T-t(1) 0 

1 J2'-
= (271')N dxo ••• 1

2,-

o dXN-l f· (13) 

This theorem justifies the use of the usual uniform 
average in the configuration space of this system. 

We use the theorem first to describe the Poincare 
cycle behavior of the trajectories. We say that a 
set M of trajectories has returned to an E neighbor­
hood of their original positions, or alternatively has 
suffered a recurrence, at time t if the inequality 

t(t) = L: -Ix;(t) - x;(O)f- < E (14) 
iEM 

is satisfied. By -I y f- we mean the function which is 
equal to the absolute value of y for - L/2 < Y ::; L/2 
and is defined outside this interval by the require­
ment that it be periodic with period L. 

We may calculate the number of recurrences in 
a given period of time by counting the number of 
zeros of the function f(t) - E and dividing by two. 
For this reason following Montroll and Mazur we 
define the recurrence time T. by the equation 

1 1. 1 iT 
T = 2- hm -T L: oCt - ta ) dt, 

r T_oo 0 a 
(15) 

where the ta are the zeros of f(t) - E. This can be 
transformed to 

1 1 1 iT - = - lim - o[f(t) - E] If'(t) I dt. 
T. 2 T~'"' T 0 

(16) 

The theorem can be applied to this expression if 
we replace the delta function with any well-behaved 

• P. Mazur and E. Montroll, J. Math. Phys. 1,70 (1960). 
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approximation. This gives 

1 1 1 JLI2 - = -- dX1 Tr 2 LM -L12 
... f dXM!5(.L: Ix.I - E) 

iEM 

X I .L: Vi sgnp Xii (17) 
iEM 

where 

sgnp y = 1 0< x < L/2 

- 1 -L/2 < x < O. (18) 

Sgnp y is defined outside this interval by the require­
ment that it be periodic with period L. This formula 
is easily evaluated to give 

1 1 (E )M-l 
Tr = 2(M - l)!L L ~ I~ ±vil, (19) 

provided E :::; L/2. In this formula we take the 
sum over all combinations of + and - signs in 
the sum of velocities inside the absolute value sign. 
It can be shown using the central-limit theorem 
of probability theory that if the number of tra­
jectories is large and a small number of v's are not 
much larger than the rest that 

(20) 

and hence the recurrence time approaches 

Tr '"" (2err/Mtu)(ML/2EC)M. (21) 

Hemmer, Maximon, and Wergeland3 have also 
given a method for finding the recurrence time in 
a problem equivalent to this one. Their definition 
of the recurrence time is the same as ours except 
that a recurrence is defined to be a return to the 
volume in M space defined by 

-lXi(t) - x.(O)t- < ai i = 1,2,3, ... ,M (22) 

for any set of positive a/s rather than the volume 
defined by (14). The recurrence time that they 
obtain for this volume is 

velocities so that ii = (8j31rM)tu, we find that this 
formula differs from (21) by an additional factor 

(3M)t/2(M!)1IM '" !c(3/M)! for large M. (25) 

This difference is not large considering that the 
formula contains factors as large as (LM/2E)M. The 
method of Hemmer, Maximon, and Wergeland can 
also be adapted to the region of Eq. (14) to yield 
precisely Eq. (19). A third method of defining the 
recurrence time due to Smoluchowski has been 
shown by Kac4 to give the same result as Hemmer, 
Maximon, and Wergeland. 

These same methods can be used to determine 
properties of the system which depend upon knowing 
which particle is on which trajectory except that 
the expressions to be evaluated are periodic in the 
usual variables with a period NL reflecting this 
property of S(u, x). Single-particle properties are 
easily calculated. We find that the time average 
single-particle distribution is uniform throughout 
the system independent of the initial spatial dis­
tribution. A particle spends I/Nth of its time on 
each trajectory, consequently the probability that 
it will have a velocity in a given range is the fraction 
of the trajectories with a velocity in this range. On 
the average, particle i requires a time of NL/Vi to 
return to its original position on its original tra­
jectory. The time required for a particle to return 
to a set of velocities e is given by 

T '" [p t P(v l ) dVI 1 P(v2) dV2 IVI - V2 I Jl , (26) 

where P(v) is the probability density for finding 
trajectories in a range about v, p = N / L is the 
density of the system, and where 0 is the compli­
ment of the set e. 

Properties of the system which depend upon two­
particle correlations are only slightly more difficult 
to calculate. The recurrence time for two particles 
to come back to their original trajectories and close 
to their original positions is given approximately by 

1 . 11 iT (23) T(2) = lIm -2 -T .L: !5(t - ta)Aii(t)Akk(t) dt, (27) 
r T-+CtJ 0 a 

If we choose the a/s all equal and adjust the common where the ta's are the roots of the function 
value so that the volume of this hypercube is equal 
to that of the "2M _a hedron" of (14), this formula t(t) - E = -lx;(t) - x;(O)t-
gives 

If we further assume a Maxwell distribution of 

3 P. C. Hemmer, L. C. Maximon, and H. Wergeland, 
Phys. Rev. 111, 689 (1958). 

(28) 

This formula counts only those zeros of t(t) - E 

which occur when A;; and Akk are both equal to 1. 
The formula is approximate because it is not clear 

4 M. Kae, Phys. Rev. 115, 1 (1959). 
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whether we should assume that there are one or 
two zeros of the function for each recurrence. Equa­
tion (27) can be transformed to 

~2) = ~ INL ••• iNL dxo ••• dXN-l 
T, 2(NLt 0 

X o(lx; I + IXkl - ~) 

X Iv; sgnp X; + Vk sgnp xkl A;;Akk (29) 

where in each of the A's Wkh is set equal to Xl: - Xh. 
This expression contains a special case of the 
quantitya;';k'l: 

1 INL 
= WL)N-2 0 

(30) 

to be evaluated, which is of some interest in itself. 
It gives the time average probability of finding 
particle j' on trajectory j which is at a given position 
and particle k' on trajectory k at another given 
position. Written out more fully, the expression 
for a;';k'k is 

1 
Ci;'Wk = (NL)N-2 

I
NL INL 1 

X . . . N2 .L: exp [-i(j'Ul + k'u2)] 
o 0 'U1Ua 

N-l 
X II S[UI. Xi - Xh]S[U2 • Xk - Xh] II dXh. (31) 

h~O h"i ,k 

The integral over a typical Xh in this expression has 
the form 

1 1NL 
I = NL 0 S[u1 • X; - Xh]S[U2, Xk - Xh] dXh (32) 

and using Eq. (10), 

i(u,+u,) 1 INL 
I = e NL 0 S[u1 , Xi - Xh + L] 

X S[U2, Xk - Xh + L] dXh. 

In this expression we may introduce x, = Xh - L 
as a new variable of integration and maintain the 
same limits because the integral is over a full 
period to obtain 

or 
I = 0 unless U2 = -U1 mod (211'"). (33) 

We use this formula to eliminate U2 from the expres­
sion and find that the result is now clearly periodic 
in each Xh with period L so that each spacial average 
can now be carries out over this shorter range. 

Following this the evaluation can be carried out 
straightforwardly to obtain 

1 (N - 2)! 
ai'ik'k = N (N - k' + j' - 1)! (k' - j' - 1)1 

( )
k'-;'-l( )N+;'-k'-l Xk-X' Xk- X' 

X ' 1 - ' L L 

for k' > j' and Xl: > XI (34) 
and 

(N - 2)! 
a;';k'k = N(N - k' + j' - 1)! (k' - j' -1)! 

X (X; ~ Xkr-k'+i'-l( 1 _ Xi ~ Xkr-j'-l 

for k' > j' and Xk < Xj. (35) 

The results for j' < k' are obtained by interchanging 
labels. In terms of a the two particle recurrence 
time is 

1 1 1LI2 1LI2 
T (2) = 2L2 dx; dXk o( Ix; I + IXk I - ~) 

, -Ln -Ln 

X Iv; sgnp Xi + Vk sgnp xkl ajikk. (36) 

To simplify the work, we consider only the limit 
of an infinite system so that Nand L approach 
infinity in such a way that p = N / L, the density 
of the system remains finite. Then a is given for 
k' > j' by 

[ ( )]k'-i'-l a 1 p Xk - X; -(z,,-z.)p 

i'ik'k ....... N (k' _ j' _ 1)! e '. 

ai'ik'k ....... 0 (37) 

This second expression becomes zero because the 
particles cannot change their order along the line 
in an infinite system. Substituting this in Eq. (36) 
we obtain the result 

1 p I I (p~)'+l -P' 
T;2) = 2N3 Vk - Vi -1I-! - e 

.+2 l' + ;N3,,! IVk + Vii 0 y'e-
PW 

dy 

where" = k - j - 1 and 

1 l' v -pv d 1 [1 
II' Y e Y = ---;-;r -

• 0 p 

~ (p~)i _p,]. 
~ 0' e i-a 'to 

(38) 

The result which we have given for Cij'ik'k can 
actually be obtained more simply. We note that 
a;'jk'l: is the probability that particle j' is on tra­
jectory j at a given position Xi and that there are 
exactly" = k' - j' - 1 trajectories between this 
point and the given point Xk where trajectory k is 
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located, so that particle k' falls on this trajectory. R[u, Xk + Vk. - Xh] 
From (13) the probability that there are 1I tra-
jectories between these points is given by == L: g(Vh)S[U, Xk + Vkt - Xh - Vht] dVh. (43) 

eN - 2)! (Xk - Xi)'(l _ Xk - Xi)N-,-2 
1I! (N - 1I - 2)! L L ,(39) 

and the probability that particle j' is on trajectory j 
is just liN no matter how the trajectories are 
arranged by a study of the single-particle average 
we have discussed. Combining these results gives 
(34) and (35). The extension from two particles to 
M particles is obvious. 

ENSEMBLE CALCULATIONS 

We now consider the calculation of the properties 
of an ensemble of systems obtained by assuming 
suitable spatial and velocity distributions for the 
particles at the initial time. It might appear that 
any results found in this way should be obtainable 
from the formalism we have already given by virtue 
of the equivalence of time and ensemble averages. 
This is not the case, however, because we are able 
to study the dynamics of an ensemble in the limit 
of a large volume and large number of particles. 
For this infinite system the Kronecker-Weyl the­
orem is not available. Perhaps this is one of the 
more interesting points to be illustrated by a model. 
Unfortunately the mathematics becomes somewhat 
messy so we limit the discussion to properties which 
can be written in the form 

F = (f[vo(O); X;(t) , viet]). (40) 

We assume, as indicated, the f is a function of the 
coordinate and momentum of the jth particle at 
time t and also of the velocity of particle zero at 
the initial time. Note that we have assumed that 
particle zero starts at the origin at zero time. The 
function f may also depend on t explicitly without 
causing trouble. The quantity F can be written 
quite simply in terms of the Aik'S and the initial 
values of the variables of the system, 

F = L: (f(vo; Xk + Vkt, vk)A;k). (41) 
k 

We assume that at the initial time the particles 
are uniformly distributed in space except that the 
zeroth particle is at the origin and that each has 
the velocity distribution g(v). The thermal distribu­
tion gT, 

gT(V) = (m{3/27r)' exp [- m{3v2/2], (42) 

is of particular interest~ Since the velocities of the 
particles are independent, it is possible to simplify 
formulas by expressing them in terms of the quantity 

Thus we have 

x g (R[u, Xk + Vkt - Xh]) i: g(vo) dvo 
A"~ 

1'" lL l x
• + g(vo) dvo dXN-l· . . dx! 

-co 0 0 

X IT (R[u, +vot - xhDf(vo; vot, vo)}. 
h-I 

(44) 

This can be simplified by using the fact that 

l L lZn 1%' 
o dx" 0 dx,,_!··· 0 dx! 

1 lL lL lL = - dx" dX,,-l •.• dXl n! 0 0 0 
(45) 

if the integrand is symmetric in these arguments. 
By interchanging integrations, using this relation 
and carrying out the sum over k explicitly the 
expression can be simplified considerably: 

F 1 ",N-1 [ .. ] = - £.oJ --- exp -1,JU 
NuL 

[ILL IN-2 X L 0 R[u, Xk + Vkt - Xh] dXk 

+ ~ ~ exp [-iju] L: g(vo) dvof(vo, vot, Vo) 

[ILL IN-l X L 0 R[u, Xk + Vkt - Xh] dXh 

Q(u, Xk + Vk t , Vk) == L: g(Vo)f(vo, Xk + Vk t , Vk) 

X S[u, Xk + Vkt - vot] dvo. (46) 

Next it is convenient to consider the origin to be 
at the center of the interval. This is accomplished 
by the transformation, 

1L 1L/2 jL 
dXk = dXk + dXk, 

o 0 L/2 
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X~ = Xk - L in second integral, 

S(u, w' + L) = e+i"S[u, w'], 

1L 1LI2 10 

dXk = dXk + e-'" dxL 
o 0 -L12 

(47) 

where the integrand is now the original function 
in both integrals. Now 

1'" 1 1L = _'" g(Vh) dVh L 0 S(u, w - Vht - Xh) dXh (48) 

and 

1 1L . L 0 S[u, w' - Xh] dXh = 1 + (w' /L)(l - e-'U

) 

X S[u, w'] for -L < w' < L, (49) 

hence if contributions from outside this range are 
negligible, as is true if g(Vh) ::: 0 when Iw - vhtl > L, 
we have 

1 1L L 0 R[u, w - Xh] dXh 

::: 1 + ± (1 - e-''')T[u, w], (50) 

with 

T[u, w] = i: (w - Vht)S[U, w - Vht]g(Vh) dVA' (51) 

We expect these conditions to be fulfilled for large 
L and N. 

Now consider the limit as Nand L approach 
infinity with p = N / L held finite. This gives 

F 1 12 
.. d -iiu = p- ue 

211" 0 

X [i'" dXk + e-
i
" f", dXkJ i: g(Vk) dVk 

X Q(u, Xk + Vkt, Vk) exp {p(l - e-'U)T[u, Xk + Vkt]} 

+ 21 12.- du e- iiu 1'" g(vo) dvo f(vo, vot, vo) 
7r 0 -co 

The integration over u can be carried out if the 
expressions for T and Q are simplified. 

with 

T(u, w) = -A(w) + (w + A)eiU
, 

Q(u, w, Vk) = B + Ce i
", 

A(w) = 1'" (-w + vAt)g(VA) dVA, 
",II 

C = i: 1 

g(vo)f(vo, w, Vk) dvo, 

where we have used the assumption 

i: vg(v) dv = O. 

We make use of the formula 

J(m) == ~ 12.- du e- im" 
211" 0 

X exp {p(l - e-iU)(_A + Ge+i")} 

= (G/ A)m/2I ... [2p(AG)']e-(HG)P, 

(55) 

(56) 

(57) 

where 1m is a Bessel function of imaginary argument. 
This formula is easily obtained by integrating the 
usual generating function for Bessel functions, 

around the origin with a r m
-

1 factor and changing 
variables. 

The results obtained by using /i[y - Xi(t)] for f 
are particularly interesting. This gives the prob­
ability P(y) of finding particle j at position y at 
time t. The result is 

P(y) = {2p(1 - Bo)BoHilj + p(l - Bo)2Hi-llf-l 

+ pB~Hj+ll;.H +(l/t)H
j 
g(y/t)I j} exp[ - (2A(y)+y)p] 

X exp {p(l - e-i")T[u, vot]}, 

where we have used the fact that 

(52) where 

1 1 12
'-

N ~ --t 211" 0 du, (53) 

and have assumed that Q --t 0 for Xk large in order 
that we have the limit 

[1 + (l/L)(l - e-iU)Tt --t exp {p(l - e-iU)T} (54) 

for all values of Xi which contribute. 

1'" H = [y + A(Y)J' 
Bo = ./1 g(vo) dvo A(y) 

(59) 
I .. = In(2p{A(y)[y + A(y)]}t) 

We examine the behavior described by this com­
plicated formula only asymptotically in the limit 
of large time so that we may set y/t ~ 0 throughout 
the expression. However we shall assume that y is 
also large of order t' to keep in certain contributions 
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which would otherwise be neglected. In this limit 

A ~ t L'" vg(v) dv, 

Bo ~ L'" g(v) dv. 
(60) 

A standard asymptotic formula for the Bessel 
function of large argument gives 

J(m) '" (G)mI2 1 2(AG)l p_(A+G)p 
= A [47rp(AG)']i e 

(
G)mI2 1 -(Ai-GI),p 
A [411"p(AGi)]I e (61) 

and since G = y + A ~ A, 

J(tn) '" (411"pA)-!e-·'PI4A 

and if 

11'" D = - vg(v) dv, 
p 0 

we have 

P(y) ~ (411"Dt)-!e-·'/4D'. (62) 

Thus the long-time effect of the motion is to cause 
the particles about the origin to appear to diffuse 
away. This, of course, is not true diffusion since 
there is no way for a particle to get past its nearest 
neighbors. This delocalization phenomenon is not 
unexpected here since it also occurs in one-dimen­
sional harmonic-oscillator assemblies. 6 

We can obtain precisely this value of D from an 
extremely crude statistical model of this process. 
We assume that the trajectories are "on the average" 
side by side with a distance II p between them. 
The particle we are observing performs a random 
walk on these trajectories, stepping right or left 
with equal probability at a rate equal to the rate 
at which the trajectories move this distance to 
collide with each other. This rate is 

p i: Ivl g(v) dv = 2p L'" vg(v) dv. (63) 

The usual theory described, for example, by Chan­
drasekhar6 gives for the "diffusion constant" of this 
motion the expression 

D = !nZ2; 
n = rate of stepping, Z = length of step. (64) 

Now if we assume that the process is such a random 
walk over a line of points a distance II p apart with 

i R. J. Rubin, J. Math. Phys. 1, 309 (1960); 2,373 (1961). 
6 S. Chandrasekhar, Rev. Mod. Phys. IS, 5 (1943). 

a jumping rate of p(lvl) as above we get the same 
result as in the foregoing analysis. 

Another quantity of interest is the correlation 
function (vo(O)Vj(t». The behavior of correlations 
of this type is of general interest because of the 
role they play in the theory of stochastic processes. 
A trick is required to calculate this quantity using 
the general formalism we have given because there 
are contributions to the integral over Xk for large 
values of the argument, and we are required to make 
a transformation on the expression in Eq. (46) before 
taking the limit of an infinite system. We restrict 
the g(v) under consideration to the thermal distribu­
tion gT(V) given in Eq. (42). Then the expression 
of Eq. (46) with t taken as vo(O)Vj(t) has the general 
form 

+ second term. 
Integrating by parts in Vk we obtain 

F 1 (mf3)! 1'" -(m/l/2).,' d = - - e Vk 
mf3 211" _'" 

(66) 

and, since in this expression alavk = talaxk, we have 

t 1'" F = mf3 _'" dVk gT(Vk)[q,(L + Vkt) - q,(Vkt)] 

+ second term. (67) 

Here we may make use of Eq. (10) and then take 
the limit as N approaches infinity with p finite 
as before. The final result can be written as 

(Vo(O)V i( t» 

pt 1'" d [Hi+II + Hi-II 2HiI-] = 2------r.1 v i+1 i-I - i 
1I"mfJ -'" 

X exp [-mf3v2 - (2A(vt) + vt)] + (~:Y 

xi: v2 dvHiI i exp {-(mf312)v2 
- [2A(vt) + vt]p}, 

with 

H = [A(vt) + vtl A(vt)]i, 
(68) 

In = In{2p{A(vt)[vt + A(vt)]}i). 

We note from the definition of A in Eq. (60) that 
H is actually independent of t and that the argument 
of the Bessel function is linear in t. 
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A rather messy calculation shows that for large t, 

'" (mf3)i( 5) 1 (vo(O)vo(t» = 211" -1 + 211" /t3 ' (69) 

Unlike harmonic oscillators this correlation ap­
proaches an asymptotic value even for a finite 
system and without oscillation. The initial thermal 
average appears to be responsible for the loss of 
Poincare cycles. Since this correlation goes to zero 
for large times vo(t) viewed as a stochastic process 
must be ergodic by a theorem of Montroll and 
Mazur.2 In essence the vanishing of this correlation 
for large times indicates a type of irreversibility in 
this system. If a single particle of the system is 
given an electrical charge the motion of this particle 
in an external electric field will give rise to an 
electrical conductivity. This conductivity can be 
expressed in terms of the motion of the system in the 
absence of the external field by the Kubo formula7 

cr(w) = e2f3 i'" eiW'(vo(O)vo(t» dt. (70) 

This formula is sometimes written with an addi­
tional factor to give convergence of the integral for 
large t but from what we have just seen such a 
factor is clearly unnecessary for this system. The 
time integration indicated in the formula can easily 
be carried out on the expression for the correlation 
we have given, yielding a result which still contains 
a messy integration over v. For low frequencies we 
find that 

cr ~ e2f3 [ D + linear term in w + (mf3/211")! 

X ( -1 + :J 2> w
2 

log w + o (w2
) ] • (71) 

At zero frequency the conductivity is related to 
the diffusion coefficient as is required by the Einstein 
relation7

; the w2 log w term is easily shown to be 
implied by the asymptotic dependence given in 
Eq. (69). It would be interesting to know whether 
such terms exist for actual physical systems. 

7 R. Kubo, Proc. Phys. Soc. Japan 12, 570 (1957). 

Other initial conditions can also be treated. Let 
us assume that at the initial time the first M particles 
labeled from zero to M - 1 are restricted to lie 
in the interval [0, L/2] and that they have a Max­
wellian velocity distribution with temperature T I • 

The rest of the particles labeled from M to N - 1 
are assumed to be in the interval [L/2, L] at time 
t = 0 and have a Maxwellian velocity distribution 
with temperature T2 • These initial conditions model 
the usual experimental arrangement used for study­
ing gaseous or liquid diffusion. The mathematics 
which we have described for uniform initial condi­
tions can also be carried through in this case with 
slight additional complication. The most striking 
feature of the analysis is that the condition that 
the pressures in the two regions be equal to each 
other, which is necessary in order to make observa­
tions of diffusion in the usual experiments, is re­
placed for this model by the somewhat different 
condition that 

(72) 

where PI and P2 are the initial densities in the two 
regions. This condition actually states that the 
number of trajectories crossing the boundary be­
tween the two regions per unit time be the same 
from the left as from the right. Given in this way, 
the condition is not surprising. Carrying through 
the analysis we find that a particle starting on the 
boundary of the two regions again has a Gaussian 
probability distribution asymptotically with time, 
but with the diffusion constant D given by 

D = [4Pl/(Pl + P2)2](211"mf32)-1 

= [4pd(PI + P2)2](211"mf3I)-t. (73) 

It appears that a variety of other properties of this 
system could be calculated if required. 
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Lepton Scattering Amplitudes in Two Model Field Theories* 
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Two lepton-lepton scattering amplitudes are considered within the context of a no-recoil Bloch­
Nordsieck model, with emphasis on the singularities in that configuration-space variable conjugate 
to momentum transfer. For the interaction £" = -gl!At/;, renormalizable in four dimensions, and in 
the approximation of including only the exchange of all possible bosons between a pair of leptons, a 
light cone singularity no worse than that of the one-boson-exchange graph is found. Similar statements 
may be made for the same interaction, nonrenormalizable in six dimensions, provided certain con­
tinuations in the center-of-mass energy variable are employed; otherwise, an essential singularity 
appears. A remark illustrating the formation of bound states is made for the renormalizable inter­
action. No argument is given to establish the relevance of these models to the actual field-theoretic 
situations. 

I. INTRODUCTION 

RECENT work of Lee, 1 and of Feinberg and 
Pais,2 has stimulated interest in the possibility 

of constructing sensible nonrenormalizable field the­
ories.3 An essential part of the peratization 
methods2.u appears to be the necessity of 
exhibiting a scattering amplitude damped on the 
light cone (lc) of that configuration-space variable 
x conjugate to momentum transfer. The presence 
of such damping suggests that the corresponding 
field theory may have a small but finite chance 
of existing; and conversely, from the appearance of, 
e.g., an essentiallc singularity, one would infer that 
the corresponding interaction is not sensible, or that 
specific prescriptions (such as regularization) must 
be employed. Further, it is not known if the peratiza­
tion calculations are very sensitive to their common 
approximation, the neglect of external 4-momenta­
and hence all c.m. energy dependence-but not 
momentum transfer. These considerations have 

* This work supported in part by the U. S. Air Force 
through Air Force Office of Scientific Research; Contract 
AF 49(638) 1389. 

t Present address: Department of Physics, University of 
California, Davis, California. 

t Permanent address: Physics Department, Brown Uni­
versity, Providence, Rhode Island. 

1 T. D. Lee, Phys. Rev. 128, 899 (1962). 
2 G. Feinberg and A. Pais, Phys. Rev. 131, 2724 (1963); 

Phys. Rev. 133, B477 (1964). 
3 These theories differ from those discussed previously 

(e.g., L. N. Cooper, Phys. Rev. 100, 362 (1955), and other 
references quoted there) in that the S-matrix is not unity. 

4 K. Bardakci, M. Bolsterli, and H. Suura, Phys. Rev. 
133, B1273 (1964). 

6 H. M. Fried, Phys. Rev. 133, B1562 (1964); and "Func­
tional Methods in the Peratization Theory of Weak Inter­
actions," CIMS preprint. 

motivated Khuri and Pais,6 and Pais and Wu7 to 
study singular potential theory models, in a search 
for possible self-damping mechanisms. In a spirit 
somewhat similar to that of the recent calculation 
of Sawyer,8 we would like to consider a singular, 
nonrenormalizable model within the realm of field 
theory. 

In order to make the problem soluble, we consider 
lepton-lepton scattering amplitudes defined for the 
simplest interaction within the Bloch-Nordsieck 
(BN) mode1.9 This model has been employedlO in 
studies of lepton progagator structure, and it turns 
out that analogous techniques may be used to 
discuss scattering amplitudes as well. In such approx­
imations there are no antileptons, and hence all 
closed loops vanish. We go further and neglect all 
lepton self-energy and vertex-type structure, in order 
to construct relatively simple amplitudes given by 
the exchange of scalar bosons in all possible com­
binations (ladder and crossed graphs) between a 
pair of BN leptons. 

Our method is to first write down (Sec. II) the 
generic, functional form of all such approximate 
scattering functions, and to then apply (Sec. III) 
the formulas to the interaction £' = -gl/iAy,. in (A) 
four dimensions and in (B) six dimensions. Theory A 
is conventionally renormalizable; B is not. Our 
results indicate that, considered as a function of x, 

6 N. N. Khuri and A. Pais, Rev. Mod. Phys. 36, 590 (1964). 
7 A. Pais and T. T. Wu, J. Math. Phys. 5, 799 (1964); 

Phys. Rev. 134, B1303 (1964). 
8 R. F. Sawyer, Phys. Rev. 134, B448 (1964). 
9 F. Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937). 
10 See, for example, N. N. Boguliubov and D. V. Shirkov, 

Introduction to the Theory of Quantum Fields (Interscience 
Publishers, Inc., New York, 1959). 
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these configuration space amplitudes may each 
possess a Fourier transform if certain continuations 
of the c.m. energy variable are judiciously performed 
during the process of integration. In particular, such 
continuations are necessary to avoid an essential 
singularity in Case B; by essential singularity we 
here mean an exponential divergence of form 
exp (l/z), z ~ 0+. These remarks may be illustrated 
by stating the nature of these amplitudes near the lc 
(X2 = r2 - x~ '" 0), and, when appropriate, near the 
apex of the lc (r '" 0). (A) A singularity of form 
(x2)-I(r2

)-';(,). If certain linear combinations of the 
external 4-momenta, denoted by L(q), are initially 
set equal to zero, this changes to (X2

)-1 Ix21-';(·). 
(B) A singularity of form Ix2 1-2

+
G

/
r

' {I + b/r2}, 
a > O. If the approximation L(q) = 0 is initially 
made, this changes to (X2)-3 exp {a(s)/II-x2}. Here 
a(s) depends upon the total c.m. energy s in such 
a manner that Re a(s) < 0 for s > 4m2, where 
m denotes the lepton mass. In fact, a(s) is closely 
related to the lowest g2 order approximation ales) 
of the Regge function a(s), appropriate to this 
interaction, which has been discussed by many 
authorsll

•
12

; here, ex = 1 + al' 
For interaction (A), in the physical region for 

scattering, we thus find a certain measure of "damp­
ing at the origin" when integration over r is per­
formed, during the calculation of the Fourier 
transform. For s < 4m2, however, a(s) is real and 
positive, with the effect of introducing a pole into 
the continuation of the scattering amplitude when­
ever a(s) passes through an integer. Hence the 
behavior of the configuration space model amplitude 
near the origin acts to produce bound states (Sec. IV) 
in a manner completely analogous to the small­
impact-parameter behavior of the (Coulomb) poten­
tial theory model of Ref. 11. 

The drastic nature of the approximation which 
initially sets L(q) = 0 is apparent for interaction B 
unless one has the possibility of continuing in s; 
for example, if s is fixed such that s = So > 4m2

, 

an exponential divergence appears on the interior 
of the lc. The reason for this is that this model 
distinguishes between interactions A and B by ex­
hibiting an exponential factor whose argument near 
the lc is proportional either to In Ix21 or to l/x2

, 

respectively. In the latter case, spacelike and time­
like regions have opposite signs; and since this 
dependence is exponentiated, an exponential diver­
gence can occur. The same conclusion may also be 

11 R. Blankenbecler and M. L. Goldberger, Phys. Rev. 
126, 766 (1962). 

12 B. W. Lee and R. Sawyer, Phys. Rev. 127, 2266 (1962). 

valid for the essential singularities encountered in 
previous peratization calculations.4

•
6 Our result, how­

ever, is certainly model dependent, and hence with­
out general applicability. 

We also emphasize that we know of no argument 
relating these models to each field-theoretic situation. 
In fact, we think that the no-recoil models, while 
approximating the appropriate Feynman graphs with 
expressions having the correct degree of divergence 
or convergence, as the case may be, can yield results 
which have nothing to do with the interactions they 
purport to model. This is because such expressions 
contain the combinations associated with infrared 
behavior; or put another way, they give the structure 
expected in a real field theory when virtual momenta 
are very small. However, as used here, a typical 
virtual momentum may appear conjugate to the 
coordinate x, and it probably makes little physical 
sense to use these models for small x, or x2

• Rather 
than pursue this subject we here forego all claim 
to physical significance, and merely present the 
models; solubility is their raison d'~tre. 

Most arithmetical details have been put into a 
brief Appendix. We thought it worthwhile, however, 
to include the elementary manipulations of Sec. II 
in the text, since they do not seem to be very 
well known. 

II. MODEL SCATTERING AMPLITUDES 

We begin by writing down the functional state­
ment of the four-point Green's function correspond­
ing to the exchange of all possible scalar bosons 
(mass M) between a pair of distinguishable leptons 
(mass m), 

M(X1Yl, X2Y2) = M(x; y) = exp [-i(%J)AFo/OJ'] 

X G1(X1Yl 1 J)GII (X2Y2 1 J') IJ-J'-o, (1) 

where the specific choice of interaction is expressed 
by the dependence of the Green's functions G1•1I 

upon the external source J(z). Coordinates with 
subscript 1 shall always refer to lepton I, and sub­
script 2 denotes lepton II. Within the stated approx­
imations, (1) can be obtained directly from Schw­
inger's functional solution for the unrenormalized 
four-point Green's function, but it is easy to see 
that the expansion of the exponential operator of 
(1) yields the sum of all ladder and crossed graphs. 
The nth term of that expansion produces n boson 
propagators Ap , which link a pair of (n + 2)-point 
Green's functions; each of the latter is symmetric 
in its n boson coordinates, and may be written as 
a permutation sum over n! distinct terms. The 
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combination of these two Green's functions then 
produces a total of (n!)2 terms which rearrange 
themselves into the desired nl topologically distinct 
graphs, each of which occurs nl times; and the (n!)-l 
factor coming from the expansion of the exponential 
just restores the proper counting. 

All the complexity of the problem has been put 
into the Green's functions GI •II, and we first write 
down their differential equation, without approxima­
tion, 

[m + 'Y' Oz + .g(x) ]G(xy I J) = o(x - y), (2) 

where .g(x) = .g[J(x)] = gJ(x) for the interactions 
A and B. It may be noted that the interaction 
£' = -gl{tA 21/;, corresponding to the choice .g = gr, 
is nonrenormalizable in four dimensions and can 
also be studied in a BN model; closed-form solutions 
for the configuration-space scattering amplitudes are 
here obtained in terms of quadratures over the 
logarithm of a Fredholm-type determinant. 

The BN approximation9 replaces the Dirac 'Y 

matrices by constant 4-vectors iv", with v2 = -1; 
this effectively neglects "radiative recoil" variations 
of the lepton's momentum. In this model, the Green's 
functions satisfy 

[m + iv·oz + .g(x)]G(xy I J) = o(x - V), (3) 

which can be solved immediatelylo: 

X {exp [ -i 1£ de.g(x + ev) J}o(X - y - ~), (4) 

+ f S~(XI - Ul)S~I(X2 - u2)T(u; v) 

X S~(VI - YI)S~\V2 - Y2), (6) 

where the S~' II are free (because of our neglect of 
self-energy structure) lepton propagators; the Fourier 
transform of T (x; y), evaluated on the mass shell of all 
4-momenta, represents the conventional momen­
tum-space scattering amplitude. Hence it is conven­
ient to discuss the amputated form of (5), which we 
do in the following way. Amputating first on p, we 
denote by G(qp I J) the product (m - v· p )G(qp I J); 
and a single integration-by-parts on the variable ~ 
then yields 

G(qp I J) = o(q + p) + i1(qp I J), 

i1(qp I J) = (211')-41
00 

d~ e-iHm-"pl f dx eilQ+plz ~ 
o o~ 

X exp [-i f de.g(x + ev) 1 (7) 

The o(q + p) term of (7) corresponds to the dis­
connected term of (1), which may be removed by 
considering the functional H(xy I J) = G(xy I J) -
Sp(x - y). 

Amputation on q is most easily performed by 
defining a new variable x' = x + ~v, such that i1 
becomes 

i1(qp I J) = (211')-4 f dX'eila+plz' 

(8) 

with 
where m is understood to have a small, negative, 

imaginary part. The momentum-space Green's func- 5'(~ I x') = :1: exp [-i f de.g(x + ev) Jlz-%'-" 
tions, defined by ,,< 

are then given by 

{}(qp I J) = i(211')-4 f dx eilQ+plz 1m 

d~ 

X exp -iHm - v·p] 

= -i.g(x') exp [ -i { de.g(x' - ev) 1 (9) 

Again employing an integration by parts, and denot­
ing by i1(qp I J) the combination (m + v·q)i1(qjj I J), 
we obtain 

i1(qp I J) = -i(211')-4 J dx eilo+plz 

X exp [ -i { de.g(x + ev) J. (5) X {5'(O I x) + 1m 

d~ e- iHm
+"

ol :~ 5'(~ Ix)}, (10) 

The amplitude M(x; y) of (1) is related to the 
configuration-space scattering amplitude T(x; y) by 

M(x; y) = S~(XI - YI)S~I(X2 - Y2) 

where the prime on the x coordinate of (9) has been 
dropped. 

A marked simplification, corresponding to "going 
to the mass shell," can be achieved here; but it is 
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first worthwhile to consider the type of lepton 
progagators we are producing. For an exact treat­
ment of interaction A or B we would use, in the 
construction of any Feynman graph linking leptons 
I and II, lepton progagators given by the denom­
inator function 

D(q + L k.) = m + i'Y'(q + L k i ), 
i i 

where k. denote internal, virtual boson momenta. 
In the BN model, in contrast, we are producing 
functions of form 

To see the comparison, rationalize the correct de­
nominators and take the infrared limit Li k. « q, 

D-I ~ D;:~(q, L k;) 
i 

For a scalar interaction (the kind we consider here), 
there is no difficulty in replacing each factor of 
-i('Y·q) by m; hence, on the mass shell, q2 + m2 

= 0, 
(11) may be replaced by 

and with this understanding, we obtain the simple 
answer 

DMS(ijp I J) = -i(211")-4 I dx ei[q+"!Z:f( co I x). (14) 

In the perturbative expansion of (14) combinations 
have occurred such that the sum over n! permuta­
tions of the n symmetric boson coordinates, entering 
into an (n + 2)-point function, has been replaced 
on the mass shell by an equivalent sum over n 
permutations of related denominator factors; this 
is written down explicitly in Appendix I. 

Our model scattering amplitude may now be 
written in the form 

r(q; p) = (211")4 exp [-i(o/oJ)AFo/oJ'] 

X i1~S(ijIPI I J)i1~/(ij2P2 I J')IJ-J'-o, (15) 

In (15) we have two functionals ;Fr. II, depending 
upon the variables Xl.2 and V1 • 2 = ql,2/m. Sub­
stituting (14) and (9) into (15) there results 

r(q; p) = o(ql + PI + q2 + P2) 

X J dx e'(Q.+v,)"'f/;(x I ql,2) , (16) 

(12) where 

Exactly the same form is obtained within the BN 
model ifwe make the mass-shell replacement v=q/m; 
with this identification of v, the model just duplicates 
the infrared structure of each Feynman graph. It 
should be remarked that the use of the BN model 
as an initial step of an approximation scheme is, 
apparently, the antithesis of the peratization approx­
imations,2.4·s where external momenta are neglected 
compared to internal momenta. 

The procedure of "going to the mass shell," in 
(10), can now be trivially performed, since the 
combination (m + v·q) appears only in the expo­
nential factor of the ~ integrand of D. We may 
therefore write 

iJMS(qp I J) = -i(211"f4 J dx ei(q+p)z 

X {;F(O I x) + EO d~ :~ ;F(~ I X)} , (13) 

provided that the upper limit convergence of each 
t-integration, occurring in the perturbation expan­
sion of :f(~ I x), is assured. But this will be the case 
if the Fourier transform of ,g(x + ~v) is supplied with 
a convergence factor, 

,g(x + ~v) -+ J dk~(k)e'k[z+~.le-·~I._o+. 

f/;(x I Ql,2) = exp [-i(o/oJ)AFo/oJ']gJ(Xl)gJ'(X2) 

X exp [ -i f" d~,gJ(x, - ~IVI) J 
X exp [ -i EO d~2,g'(X2 - ~2V2) Jlo' (17) 

with ,g' = ,g[J'] and x = Xl - x 2 • This is as far as 
we can go without specifying gJ[J]. 

1lI. SPECIFIC MODEL APPROXIMATIONS 

The functional dependence of the scattering am­
plitude given by (16) and (17) can be evaluated 
immediately for the interactions A and B; one finds 

f/;(x I QI.2) = { -il AF(X) - l fO d~lAF(X - ~IVl) 

X 1'" d~2 AF(x + ~2V2)} e,(zlq",), (18) 

where 

I(x I Ql,2) = il Ii'" d~l d~2AF(X - ~lVl + ~2V2). 
and VI ,2 = ql.dm. 

A remark concerning the structure of this result 
may be pertinent here. The lowest-order term of 
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1/1, -il AF , gives just the one-boson-exchange graph, 
while the two-rung ladder graph is given by the 
Fourier transform of -ig2AF(X)f(x ! q!.2)' Thus 
uexponentiation" has occurred, in (18); but in con­
figuration space, rather than in momentum space. 

The existence of a well-defined transform for (16) 
depends upon the behavior of the various parts of 
(18) near the Ie and near the apex of the Ie. We next 
describe the relevant properties of these functions 
for the cases A and B, treating the renormalizable 
interaction first; all arithmetical details have been 
put into Appendix II. 

(A) Near the Ie (lx2
! M2 « 1) the one-boson­

exchange contribution behaves according as 

-ig2
AF (X) ~ (irY ;2 , (19) 

while the second term in the curly bracket of (18) 
(which, by itself, corresponds to the simplest crossed 
graph) is less singular. 

g4 10"" d~IAF i"" d~2AF 
'" (~~)\X.ql)-!(X.q2)-! In2 Ix2 1. (20) 

It should be remarked that the factors X'q!,2 of (20) 
can never vanish, on the Ie, if m ~ 0, r "e O. 

The function fex I q!,2) is finite on the lc. However, 
near the apex of the Ie a logarithmic singularity 
appears which plays a central role in the subsequent 
discussion of bound states, 

(21) 

where 

(mu)2j"" ds' a(s) = - -,-- [s'(s' - 4m2W 1. 
211' 4m'S - s 

(22) 

The properties of a(s) have already been described 
in the Introduction. We have retained the boson 
mass dependence of (21) to emphasize that it is 
this mass which provides the scale; this is not 
surprising in an infrared model. 

We now consider the effect on these estimates of 
prior approximations. For this, we write f(x ! q!.2) = 
f(x2, X'ql,2, s), where 8 = - (ql + Q2?' The compo­
nents of Q!,2 may, of course, be simply related to 8, 

but it is convenient to treat them separately in order 
to parody similar peratization approximations when 
m "e O. We denote by L(q) = 0 the approximation 
of neglecting the external momenta qt.2 appearing 
in the combinations X'q!,2, in all terms of (18); 
for massless fermions, the approximations L(q) = 0 
and 8 = 0 are identical. The estimate of (20), when 

(23) 

contributing a singularity of the same type as that 
of (19), while that of (21) is now logarithmically 
divergent over the entire lc, 

f(x2, 0, s)lz'~o""" -a(8) In (lx2 ! M2). (24) 

Hence the Ie singularity of (18) remains of poly­
nomial form, 

(25) 

but the strength of the singularity depends upon 8, 

and in particular on whether 8 is above or below 
threshold. 

(B) The boson propagators in (18) are here de­
fined in six dimensions (five spatial, one time). 
Depending upon the approximations, exponential 
divergences can now appear on the Ie or at the apex 
of the lc. Independent of any approximation, we have 

ig2AF(X)lz'~o r>.J _(g2/411'3)(I/x2)2. (26) 

Consider first the simplest situation which results 
from the approximation L(Q) = O. The second term 
in the curly bracket of (18) is then even more singular 
than (26), 

g4 10"" d~IAF' i"" d~2AF!z'~O ~ (t;Y(!2Y. (27) 

but the dominant behavior arises from 

f(x 2
, 0, s) Iz'~o r-v a(s)/1I'x2

, (28) 

since (28) is to be exponentiated. Thus, to avoid 
an exponential singularity when approaching the 
exterior of the Ie, x2 ~ 0 +, 8 must be in the physical 
region for scattering; and conversely, when ap­
proaching the interior of the Ie, x2 ~ 0 -, 8 should 
be considered below threshold. 

When the approximation L(q) = 0 is not made, 
the singularity at all points of the Ie following from 
(28) is removed, but care must be taken to avoid 
one at the apex of the Ie, as r ~ O. For r "e 0, 
one finds 

f(x2, X'q!,2, s)lz'~o ~ a In Ix2 1, a> 0, (29) 

which, together with the behavior 

g41"" d~tAF 1"" d~2AFI 
o 0 zs.....,o 

'" (ml/811'3)2(I/x2)\x·qtf1(x·q2)-1, (30) 

characterizes the Ie singularity, as x2 ~ O±, 
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a> 0, (31) 

which is completely different and far gentler than 
that of (26), (27), and (28). 

Approaching the apex of the lc at a fixed angle 
such that X2 ¢ 0, it is shown in Appendix II that, 
as r -7 0, the condition Re t ::; ° may be guaranteed 
when continuations to s values below threshold are 
performed in at least one special way. These state­
ments do not guarantee the existence of the Fourier 
transform (16) but they do provide well-defined 
rules of continuation to prevent the appearance of 
exponential infinities which could otherwise occur. 
As such they stand as an example of the danger 
involved in neglecting the dependence on external 
momenta, when calculating amplitudes in a non­
renormalizable theory. 

IV. APPEARANCE OF BOUND STATES 

The previous discussion concerning the continua­
tion of s below threshold suggests that one may be 
able to see explicitly any bound states present in 
such models, and for the renormalizable interaction 
at least, this is the case. Specifically, we can isolate 
a part of the Fourier transform, (16), which arises 
from the lc behavior of (18), near the apex of the lc, 
r ,...., 0. We first indicate how this comes about 
starting from the result of (21), which when expo­
nentiated, leads to a factor (rM)-2a (a). An equivalent 
calculation will also be made based on the prior 
approximation L(q) = 0. 

The lc dependence of -ig2AF(X) contributes a 
factor (lI471'-)o(x2) to (18), and hence a contribution 
o(ql + PI + q2 + P2)T I O(s, t) to (16), where 

TIO(S, t) = !: f dx e"·'+"')%o(x2)e/(o.% .• , .•.• ), (32) 

with t = - (ql + Pl)2. The contribution to (16) 
due to the behavior of the remaining off-the-Ic 
dependence of _ig2 AF is much more difficult to 
ascertain, and is not considered here. If we now 
perform the Xo integration, in (32), 

TIO(S t) = g2 f dar eiQ •r .,! .L: e/(O"H .') (33) 
, 41l' r 2 ± 

where, in the c.m., (ql + Pl)O = 0, ql + PI = Q, 
'Y", = (r·Ql.2/r) =F q~~~; and if we then consider 
the contribution to (33) coming from the behavior 
of tco, r'Y"" s) in the region rM « 1, we find a term 

OTIO(S t) = fL ~ dQ eiQ
•
r 211/M d f 

, 41l' 0 (rM) 2 a 

g2 11 du . [ U iJ = M(-t)' 0 u2a sm M (-t) . (34) 

The point of this discussion is now evident: for 
a(s) ~ 1, the integral of (34) diverges at its lower 
limit. This situation can occur for s < 4m2

; and we 
therefore expect the bound state poles of T(s, t) 
to show up as singularities in the continuation of 
(34) from values of s above threshold. These sing­
ularities can be immediately identified by extending 
the upper limit of integration, in (34), to + CD ; 

this merely adds to OTic a finite part such that (34) 
is replaced by 

OTIO(S, t) == (g2IM2a('»r[1 - 2a(s)] 

X [- t] a (.)-1 cos [1l'a(s)]. (35) 

Equation (35) displays poles, with the appropriate 
momentum transfer dependence, every time a passes 
through a positive integer, a(s) = n, a situation 
which occurs only for s < 4m2

• In a nonrelativistic 
approximation, with s = (2m - E)2, Elm « 1, 
such poles appear whenever 

corresponding to the infinite number of bound states 
characteristic of an attractive, scalar Coulomb poten­
tial between a pair of equal-mass fermions; these 
bound states exist here because we are calculating 
with an infrared model. The central question of 
particle physics then presents itself in new guise: 
can the model be improved (e.g., by taking recoil 
at least partially into account) such that (21) and 
(34) are retained and a modified a(s) found which 
no longer diverges at threshold? A successful calcula­
tion of this sort would then provide a field-theoretic 
approximation method which yields a finite number 
of bound states and possibly also resonances; that is, 
one which includes the effect of short-range forces 
between fermions. 

The approximation used in arriving at (34) should 
really be justified. The passage to (34) is incomplete 
because corrections to the small r behavior of 
teo, r'Y"" s) should be taken into account. However, 
the effect of doing this would be only to change 
the residues of the poles which occur when a = n; 
and while it is not impossible to manufacture an 
r dependence such that certain residues vanish, these 
possibilities appear to be rather artificial. It is 
interesting to note that additional (but not neces­
sarily expected) r dependence of the form r" Inar, 
in teO, r'Y"" s), would lead to subsequent poles of 
degree q + 1 whenever a = (p + 1)/2, for odd p. 

An alternate method of obtaining results equiv­
alent to (35) is to initially adopt the approxima­
tion L(q) = 0; then, the use of (25) in the region 
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M2 Ix21 « 1 provides a contribution to (16) ex­
pressible as an integral over a single invariant 
variable A = X2, 

j
+lIM'd"A 

tlTIC(s, t) "" M-2ii 
- l"Ar2ii 

-11M' "A 

We have assumed, in writing (36), that s > 4m2
, 

Re a(s) < 0; and the continuation to values of s 
below threshold will be made from the result of 
the integral of (36). It is again convenient to add 
to (36) a nonsingular part obtained by extending 
the range of integration to ± 00. This yields 

Ie i7r
2 

r(I - a) [- tJii-l 
tlT (s, t) "" M2a r(I + a) 4 ' (37) 

which is equivalent to (35) as far as the bound 
states are concerned. 

In summary, this model possesses bound states 
whose energy eigenvalues may be determined by 
"sliding down the Ie," testing the r dependence of 
that function which multiplies the configuration 
space one-boson-exchange term, as in (21). Under 
the approximation L(q) = 0, the Ie behavior of the 
amplitude is seen to produce similar results. One 
might hope that these procedures could be used 
to test for bound states in more realistic models. 
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APPENDIX I 

Here and in Appendix II, we collect some supple­
mentary, and for the most part arithmetical, remarks 
relevant to and in roughly the same sequence as the 
topics covered in the preceding discussion. 

Explicit evaluation of (8) and (9) for the fully 
amputated (n + 2)-point Green's function yields 

i1(ijp I kl' ... ,k,,) 

by parts, and going to the mass shell, tl 
obtains 

0, one 

n ,,-1 n-2 

i1 = (-g),,·O· L:> L: (al)-l. L: (al + a2rl ... 
P-l P-l P-l 

.. -I 

X L: (al + ... + an _ 2)-1. (al + ... + an_I)-I. 
P-n-2 

(A2) 

The basic simplicity of the BN model is now evident, 
since the sum of the n! permutations of (A2) is 
reducible to a sum over n related factors. If one 
goes directly to the mass shell in (AI), the only 
portion of each of the factors 

10'" d~i e- it
/
a

" 

which can contribute comes from the lower limit, 
-i(a,) -1; and in place of (A2) one obtains the 
equivalent form 

.. 
i1 = (-g)". o· L: (a l a2 ... an_I)-I. (A3) 

P-l 

Since the factors -i(ai)-l may also be obtained 
from the integrals 

an alternate way of writing the amputated, mass­
shell Green's functions is simply given by (14). 

APPENDIX n 

The analysis of Secs. II and III follows from the 
properties of tl f in (A) four or (B) six dimensions, 

tl F4(X; M2) = (27r)-4 J d4k e'kzW + M2 - ierl (A4) 

= (Hnr2r l 10'" dt t-2e-;'M'+'z·/4' (A5) 

_ iM fJ(X2) K [M( 2)!] _ M fJ( _X2) 
- 47r2 (x2)} 1 X 87r (_x2)i 

(A6) 

= (-ig)"O(ql + PI + kl + ... + kn)tl 10'" d~e-'EtJ. for four dimensions, and 

(AI) 

where tl = m + V'q, a, = k,v, and L:~-l denotes 
a cyclic permutation of n terms over the indices 
kll ... , k". Performing n successive integrations 

= -i(47r)-3 10'" dt t-3e- ilM'+,z'/U 

= - (1 j7r)(aj aX2)tlF4 (X; M2) 

(AS) 

(A9) 
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- (M2/16'1I-)5(x2) - (1/4'11"2)5'(x2) 

for six dimensions. It should be noted that the 
propagators .:\F have previously been called .:\c; but 
we here follow the usage of Ref. 2. Subsequent 
reductions are based upon these formulas. 

(a) ED d~.:\Fix - ~v) 

= -2im(2'11"F4 J d4k e'kzW + M2Fl(2k·qFl. (AIO) 

By combining denominators, 

(k2 + M 2)-1(2k.q)-1 = f'du[e + M2 + 2uk'qr2, 

and shifting to a new variable k' = k + uq, (AlO) 
may be written in the form 

-2im(2'11")-41'" du J dk'e,,,(k'-vq
) 

X [k,2 + M2 + u2m2r2 

2 · l"'d -,,, .. ,, a A ( M2+ 22) = 'tm 0 u e aM2 ""F4 x; u m 

- 1l"i9( _x2)H~2)([ _x2(M2 + u2 m2)] l) }. (All) 

Hence, as x2 
-7 0\ for q'X ;=" 0, we obtain 

1'" d~.:\F4(X - ~v) '" ~:2 (x· qFl In Ix21, 

due to the logarithmic singularity of Ko and Ho. 
A similar result for f~ d~ .:\F(X + ~v) leads to (20). 

If, however, we make the prior approximation 
L(q) = 0, which here corresponds to setting q = 0 
in (All), the parametric integration of the latter 
can be performed, yielding 

1'" dl:.:\ \ - 1- {9(X2) -M(,,·)I 
o <; F4 .-0 - 8'11" (X2)! e 

.9(_X2) -iM(-".)I} 
- z (_x2 )!e . (A12) 

The square of (A12) then gives, near the Ie, the 
dependence of (23). 

(b) In six dimensions, representations analogous 
to those of (AlO) and (All) may be used to obtain 

1'" d~.:\F6(X - M 

_ im 1'" d -ivo'" A ( • M2 + 2 2) - -2 u e ""F4 x, u m , 
'II" 0 

(AI 3) 

from which the dominant behavior near the lc may 
be inferred, 

(A14) 

where, again, q'X ;=" 0 for m ;=" 0, r ;=" O. Thus, 
the lc behavior of the second term in the curly 
bracket of (18) becomes 

g41'" d~1.:\F6 '1'" db.:\F6\ 
o 0 ~I ....... O 

(AI5) 

which is no worse than that of (26). 
If the prior approximation L(q) = 0 is made, we 

obtain, by setting q = 0 in (A13), the lc dependence 

1'" d~.:\F6(X - ~v) \.-0 '" 1:7r2 (x2)-!, (A16) 

which leads to the result of (27). 
(c) The four-dimensional estimate of f(x I ql.2) is 

obtained by performing the ~1.2 integrations of (18), 

f(x\ X·ql.2, 8) = ig2m2(2'11"t4 

X J dk e'k"W + M 2F 1(k·qlF1(k·q2)-1. (AI7) 

When the ~ denominators are combined according to 

(k'Ql)-\k'q2)-1 = -411 

dZ(2k·ijf2, 

with ij = ZQl - (1 - Z)Q2, and t = _m2 + z(l - Z)8, 
(A17) becomes 

f = -4ilm2(27rF411 dz 

X J dke'k'''(e + M2F 1(2k·ij)-2. (A18) 

Combining denominators again, we can identify the 
dependence on X2 and X·ql.2: 

f = -8ilm2(2'11"F411 dz 1'" u du e-'v.'" 

X J dk'e,k'''[k,2 + M2 - u2tr3 

-4ilm211 dz 1'" u du e-'''··''(/},f2Y 

X .:\F4 (x; M2 - u2t) 
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. 2 211 1"" 'tq m d d -iu.·. = -42 Z u ue 
7r 0 0 

x 1"" dt e i ,'/4t - il [M'-U'.'j. (AI9) 

Since -r/ ;::: 0 for s < 4m2
, we consider s below 

threshold when performing the parametric integra­
tions of (AI9). Calling ii", = (roq/r)=r qo, on the 
lc (AI9) becomes 

_ (mg)211 dz 
1(0, r'Y±, s) = 27r 0 [-r/] 

x 1"" w dw -irM;;±w[-q'jl 

o 1 + w2 e , (A20) 

and for very small values of rM, the last integral 
of (A20) produces a logarithmic dependence, 

(
mg)2 11 dz 

1(0, rii±, s)lr~o '" - 27r In (rM) 0 [_ q2]" (A21) 

The function a(s) is here defined by the comparison 
of (A21) with (21), or directly by (22); the integral 
of (22) is well known, and we include it here for 
completeness, 

_( ) _ m
2l (4 2 )_*{0(S)0(4m

2 
- s) . -1 ( s )1 

a s - 27r2 m - s sl sm 4m2 

and 

_ m2g2 O(s - 4m2) 
a(s) = 27r2 [s(s _ 4m2)]! 

(A23) 

when the continuation s ~ z ~ s + ie has been 
performed. 

When the initial approximation L(q) = 0 is 
made, which corresponds to setting q. x = 0 in 
(AI9), the parametric integrals there can be cal­
culated immediately, 

l(x2, 0, s) = a(s) 1"" dt C le- ilM
'+iz'/4t 

= a(s){20(x2)Ko[M(x2)1] 

- i7r0(_X2)H~2)[M(-x2)l]}. (A24) 

For small values of M2 Ix2
/, (A24) provides the 

logarithmic dependence quoted in (24). 
(d) The six-dimensional version of (AI9) follows 

easily from (A9) and (AI9), 

X 1"" dt i,'/4t-it[M'-u'.'j 

o t e , (A25) 

and corresponding representations may be written, 
as in (All), in terms of Ko and Ho. For the approx­
imation L(q) = 0, it is easy to see that (28) is valid 
near the lc. The situation is more complicated when 
L(q) ;z£ 0, but it is not difficult to see that as the 
lc is approached from either direction, 

(A26) 

a = - -.l!.. dz(x'qt 2 
;::: O. 1 (m )211 

7r 47r 0 

Hence the exponential of (A26) vanishes in this 
limit, and the bad singularity of (28) is removed. 

When x2 
;z£ 0 similar results may be demonstrated, 

provided that we continue the s dependence of the 
factor [-ill of (A25) below threshold; the s depend­
ence of the ij·x factor should not be continued. 
Under these conditions q·x is real and [-ll is 
positive. There may well exist other prescriptions 
for avoiding exponential infinities at the apex of 
the lc; the ones stated here have only the virtue 
of simplicity. 

For x 2 < 0, we set Xo = ~r, ~2 > 1, and rewrite 
(A25) in the form 

1 = .(mg)2 1 11 dz 1"" -ib. 
-1, 47r r2(~2 _ 1) 0 [-rlJ 0 v dve 

(A27) 

where b = ii[( -ij2)(e - 1)1*, ii = (l/r) (q·x) = 
17(s/4 - m2

)1 - H2z - 1)(s/4)1, and 17 = r o ql/r Iqd 
in the c.m. The important r dependence is exhibited 
as a multiplicative factor in front of the integrals 
of (A27) , and the limit r ~ 0 may be taken inside 
the latter, 

(A28) 

The v integration of (A28) may be carried out 
explicitly to show that the corresponding 1 is, in 
this limit, real and negative for all real values of b; 
but perhaps the simplest way of seeing this is to 
rewrite (A28) in the form of (A25), 
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dependence of [- !tJ is again to be considered below 
4m2

• For ~2 < 1, (A25) may be written in the form 

X 1'" dt -il-;«('-O .. ' 1-.'1/4' 
o t e , 

2 1 (!!!:fl)2 r 1 dz 
(A29) f = r2(1 - e); 411" Jo [-t] 

which, for real 'Y and pos~tive -il, permits (i) a 
counterclockwise rotation of the t integration contour 
through an angle of 90°, and (li) a counterclockwise 
(clockwise) rotation of the u integration contour 
through an angle of 90° for positive (negative) 
values of .y. [The situation for 1 = 0 is identical 
with that of the L(q) = 0 approximations previously 
discussed.] The result may then be written in the 
form 

f ~ - ;2 (:;r { dz 10<0 W dw e-wl~1 

X r'" dT e-·- ct'-1lID 'I-.'1/4T, (A30) 
Jo T 

and it is clear that this quantity is real and negative. 
Hence, in this limit, exp (j) does not diverge. 

For x2 > 0, a slightly more stringent condition 
on .y is required, namely, that its 8 dependence 
shall be considered well above threshold; the 8 

x 1" v dve- iC"Ko([r2M2(1 - r) + v2]l), (A31) 

and the r ~ 0 limit may be taken inside the integral 
of (A31). One finds a complex function whose real 
part is given by 

2 1 (mg)211 dz 1 
Re f """' r2(1 _ ~2); 411" 0 [- ilJ 1 + c2 

X [I - c sinh-
1 

C ] (A32) 
~' 

where c = 1/[(1 - ~2)( -il)]\ and we may consider 
c, or .y, as positive, since (A32) is a function of c2 

only. For fixed values of ~, 71, z, -il, a sufficiently 
large value of c (c > 2.24) can always be found by 
choosing 8 sufficiently large such that the bracket 
of (A32) will be negative; and this is all that is 
needed to avoid an exponential infinity near the 
apex of the lc. 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 6, NUMBER 3 MARCH 1965 

Asymptotic Expansion of the Intensity of the Small~Angle X-Ray Scattering 
from Cylinders of Arbitrary Cross Section* 
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From a previously developed expression for the intensity of the small-angle x-ray scattering from 
randomly oriented right cylinders of arbitrary cross section and with uniform electron density, an 
asymptotic expansion is developed which can be used to approximate the scattered intensity at rela­
tively large angles of the small-angle region. The asymptotic expansion is useful for numerical calcu­
lations at these large angles, where calculations by the usual techniques of numerical integration and 
series expansion are most difficult. The terms in the asymptotic expansion are found to be determined 
by the behavior of the characteristic function (J(r) of the cross section at certain values of r. The gen­
eral asymptotic expansion is used to calculate asymptotic expressions for the scattering from right 
circular cylinders and rectangular parallelepipeds. 

INTRODUCTION 

IN order to study the size and shape of colloidal 
particles by small-angle x-ray scattering, it is 

necessary to know how the particle size and shape 
are related to the angular distribution of the scat­
tered intensity. Even when one assumes that the 
sample being studied consists of independent ran­
domly oriented identical particles with uniform elec­
tron density, the problem is too complicated to allow 
a general solution. Although the approximate meth­
ods which have been developed are ordinarily ad­
equate for analysis of experimental data, further 
studies can provide a better understanding of the 
effect of particle structure on the scattered intensity, 
thus permitting more information to be gained from 
a given experiment and also allowing scattering 
techniques to be applied to a broader range of 
problems. 

In recent years interest has arisen in the nature 
of the scattering curve at relatively large angles 
of the small-angle region-that is, at angles such 
that hL » 1, where L is a dimension characteristic 
of the particle being studied, ;\ is the x-ray wave­
length, f} is the scattering angle, and h = 411";\-1 

sin !f}. Since the scattered intensity can be rep­
resented as a Fourier integral, techniques for asymp­
totic expansion of Fourier integrals prove to be 
useful for studying the behavior of the scattering 
for this range of angles. Previous publications from 
this laboratory have been concerned with some 
general techniques for calculating the scattered in­
tensity at relatively large scattering angles l and with 
the scattering from generalized cylinders-that is, 
from right cylinders of arbitrary cross section.2 

* Work supported by the National Science Foundation. 
1 P. W. Schmidt and R. Hight, Jr., J. Appl. Phys. 30, 866 

(1959). 
! A. Miller and P. W. Schmidt, J. Math. Phys. 3, 92 (1962). 

In the present paper, a general expression is 
derived for the asymptotic expansion of the scat­
tered intensity for generalized cylinders of arbitrary 
cross section. Since asymptotic expansions of this 
type can be used most easily in the range of angles 
in which numerical integration and series expansion 
are most difficult, the general asymptotic expansion 
should be particularly convenient for numerical 
calculation at relatively large angles of the small­
angle region. 

In addition, the general expansion answers a 
question raised in previous work2 on generalized 
cylinders. In the earlier calculations, the scattered 
intensity for right circular cylinders, unlike the 
scattering from bodies of all other known shapes, 
appeared not to be proportional to h -4 at large h. 
Since the h-4 dependence of the scattered intensity 
at large h was believed to be a very general result,S 
the indications that the relation might not be satis­
fied for right circular cylinders were rather sur­
prising. Thus it is gratifying that the asymptotic 
expansion for right circular cylinders shows, in con­
tradiction to the previous suggestions, that the 
scattering at large h is proportional to h-4

, as 
expected from general principles. 

THE GENERAL ASYMPTOTIC EXPANSION 

For a randomly oriented particle with uniform 
electron density, the scattered intensity I(h) can 
be expressed2 

1 [D. 
I(k) = Ii, J

o 
dr H(r) sin hr, 

where Ds, which will be called the maximum diameter 
of the particle, is the length of the longest line that 
can be contained in the particle, and H(r) is a func-

3 Reference 1, p. 867. 
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tion which is determined by the size and shape of 
the particle. The intensity is assumed to be norma­
lized so that 1(0) = 1. As only the scattering from 
a single particle is considered, the calculations can 
be applied only to assemblies of independent par­
ticles, for which the scattering is not affected by 
interparticle interactions. 

Erdelyi,4 in his discussion of the asymptotic expan­
sion of Fourier integrals, has shown that the asymp­
totic expansion of 1 (h) will be determined by the 
values of H(r) and its derivatives at r = 0 and 
r = Da and by the behavior of H(r) at any finite 
or infinite discontinuities it or any of its derivatives 
may have in the interior of the interval of integra­
tion. The problem of calculating the asymptotic 
expansion of l(h) thus reduces to the determination 
of the behavior of H(r) in the neighborhood of r = 0, 
of r = Da, and of any interior points at which H(r) 
or its derivatives are discontinuous. 

In Ref. 2, H(r) was expressed in terms of an 
integral over a function (3(r), called the two-dimen­
sional characteristic function and having the prop­
erty that the scattered intensity J(h) for a randomly 
oriented plane lamina of negligible thickness and 
uniform electron density and with the shape of the 
cylinder cross section is given by 

I rD sin hr 
J(h) = A J

o 
21r1'{3(r) ~ dr, 

where D, the maximum diameter of the cross section, 
is the length of the longest line that can be con­
tained in the two-dimensional cross section, and A is 
the cross-section area. The intensity J(h) is normal­
ized so that J (0) = 1. For small r, 6 

(3(r) = 1 - P(1I'Atlr + ... , 
where P is the perimeter of the cross section. Also, 6 

one expects that quite generally, (3(D) = (3'(D) = 0, 
and that (3(r) and (3'(r) are continuous. Higher 
derivatives, however, can ordinarily be expected to 
have discontinuities. Rearrangement of Eq. (3) of 
Ref. 2 shows that for a generalized cylinder, H(r) 
can be expressed by the relation 

H(r) = M(r) + N(r), 

where 

o ~ r ~ D, 

M(r) = ~ i r 

ax x{3(x)Q[(r2 - X2)t], 

, A. Erdlllyi, Asymptotic Expansions (Dover Publications, 
Inc., New York, 1956), p. 49. 

I Reference 1, Eq. (8). 
a Reference 2, p. 93. 

D S r S D(l + V2)t, 

M(r) = ~ i D 

dx x{3(x)Q[(r2 
- X2)t], 

o S r S vD, (1) 

N(r) = 0, 

vD S r S D(l + v2)1, 
4 (r,-.'D') I 

N(r) = - ; 1 ax x{3(x)Q[(r2 - X2)t], 

Q(x) = 1/x - 1/vD, 

and where V is the particle volume, and v, the 
axial ratio, represents the ratio of cylinder hei.ght 
to the maximum diameter D of the cross sectIOn. 
Thus Da/D = (1 + V2)t. A consequence of (1) is 
that calculation of the discontinuities in H(r) re­
quires knowledge of the discontinuities in the de­
rivatives of (3(r). Since at present it is not possible 
to state generally the types of discontinuities to be 
expected, the calculations are carried out for types 
of discontinuities which, although they do not rep­
resent an exhaustive list of all possible types, never­
theless include most types of discontinuity that have 
been encountered when exact calculation of (3(r) has 
been possible. 

According to Erdelyi's general calculation of the 
asymptotic expansions of Fourier integrals, if at an 
interior point a of the interval of integration, H(r) 
can be written H(r) = F(r) + G(r), where F(r) and 
all its derivatives are continuous at r = a, then 
only G(r) will contribute to the asymptotic expan­
sion and F (r) need not be considered in the calcula­
tion' of the asymptotic expansion. This result will 
be used many times to simplify the calculations. 

The discontinuities in the derivatives of (3(r) will 
be assumed to fall into two classes and will be con­
sidered to occur at points called Type-I and Type-II 
points. For a Type-I point, r = a2i+l, (3(r) will be 
assumed to be expressible in the form 

r ~ a2i+l, (3(r) = L2 i+l(r) + K2 i+l(r), 

r ~ a2i+l, (3(r) = L 21+1(r), 

where 

K
2i

+
1
(r) = t A21+1[_r_2 _ _ 1J,,+«01+' 

.. -0" (a2,+1)2 , 

and where all derivatives of the function L 2I + 1(r) 
are continuous at r = a2i+l' Type-II points are 
designated by r = a2" At these points, the form 
of 8(r) are assumed to be 

r ~ au , (3(r) = L2,(r) + K2,(r) , 

r ;;::: a" , (3(r) = L2 ,(r), 
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where 

and where L 2I (r) is a function with all derivatives 
continuous at r = au. With this scheme of notation, 
odd sUbscripts refer to quantities calculated for 
Type-I points, while even subscripts denote quan­
tities related to Type-II points. 

The subscript i is allowed to have integral values 
ranging from i = 1 to i = 2n + 1, where the value 
of the integer n is determined by the number of 
Type-I and Type-II points for a given cross section 
shape. The subscript 0 refers to quantities de­
termined by the behavior of (3(r) in the neighbor­
hood of r = 0, where the Taylor expansion 

The exponents a, occurring in the above series 
expansions are determined by the form of the cross 
section. For (3(r) and (3'(r) to be continuous, all the 
a, must be greater than 1. 

From the Taylor expansion (2), M(r) is seen to 
be expressible by the series 

M(r) = Mo(r) , 

where 
'" 

Mo(r) = L B~r"+I, 
.. -0 

(3(r) = t (3(") ~O) r" 
,,-0 n. 

(2) In the neighborhood of r = vD, (2) can be used 
to show that 

is assumed to converge, with N(r) = No(r) , 

(3h')(O) = d"{3(r)/dr"lr_o. where 

'" [ o( r2 )"+2 o( r2 )"+5/2J 
No(r) = ~ C" v2D2 - 1 + DR v

'
D2 - 1 

211' "( -1)"'r(m + !)r(n - m + 1){3(2 .. -2 .. ) (0)(vD)2"+l-2m 
c: = Vr(n + 3) ]; rmr(2n - 2m + 1) 

o 211''' (-l)"'r(m + l)r(n - m + !)(3(2"-2m+1) (0)(vD)2r>+a-2m 
D" = V ~ r(!)r(n + i)r(2n + 2 - 2m) . 

When there is a Type-II point at r = a2i, then, let 
in the neighborhood of r = [(a2Y + v2 D2]1, N(r) can 

[ 
(a2.)2 - X2 J! be written 

where 

4 [ (r'-.'D') I 

F2i (r) = -; i dx XL2i(x)Q[(r2 - X2)t] 

+ f" dx XKai(X)Q[(r2 - x2)i] J, 
r ~ [v2 D2 + (a2i)2]l, 

r ~ [v2 D2 + (a21)2]~, 

As F 2i (r) and all its derivatives are continuous 
at t = [v' D2 + (au)2]t, F 21 (r) can be neglected in 
computing the asymptotic expansion. 

In the expression for Na.(r) forr $ [v2D2 + (a2.)2]!, 

S = v2D2 + (a21)2 _ r2 . 
Then, after making series expansions of K2i and 
Q, one finds that 

where 

. 2 [2D2 + ( .)2]"+2+ .. ,, C2 • = ..!!. v aa. 
n V r(n + 3 + a2') 

~ A!~mr(m + J)r(n - m + 1 + a2i) 
X f.:'o r(!)(vD)2m+3(a2/)2,.-2 .. +2a" . 

If there is a Type-I point at r = a2i+l, N(r) can 
be expressed 
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where 

Using a method similar to the technique used to 
evaluate Nu(r), one finds that 

r ~ [v2 D2 + (amY]! 

N () - i: cm1[ r2 _ 1 J"+2+a.
H

• 
2i+l r - n~O n VZ D2 + (a2i+l)Z , 

where 

. 2 [v2 D2 + (a. )2]"+2+a. H• C21+1 _ _ 1r_ 2.+1 

.. - r(!)V r(n + 3 + a2i+l) 

X t (-I)"A2.:!~r(m + !)r(n - m + 1 +a2i+l). 
m-O (vD)2m+3(a2i+l)2,,-2m+2a.I+ 1 

When there is a Type-I point at r = a2i+l, M(r) 
can be written 

where 

E 2i+l(r) = ~ L dx xL2i+l(x)Q[(r2 - x2)1] 

B!i+l = 21ra2i+lr(1)r(n + I + a2i+l) A 2i+l 
Vr(n + ! + aU+l) n 

2i+l [/VJ[( )2/ 2i+l D,. = - 21r a2i+l vD(n + 1 + a2i+l)]A.. . 

For a Type-II point at r = au, by rearrangement 
involving partial integration, in the neighborhood 
of r = a2i, M(r) can be expressed 

M(r) = E 2i(r) + M 2i(r), 

where ~ is a number such that ~ > Ir - aul, and 

Ez,(r) = J 2i(r) + ~ L dx xL2,(x)Q[(r
2 

- x
2)!] + ~ 

X f'" dx xQ{[r2 + x 2 
- (azi)2]tIK2.{[(a2;)2 - x~!), 

41r 
J2i(r) = -M2i(r) + V 

X 1'dX XK2i {[(az;)Z - x2Ji} Q {[r2 - (a2i)2 + x2]!} 

for r > au. When r < au, the same expression 
holds for E2i (r), and 

M
2
.(r) = 21r(a2i)2 i: A!i(1 - r 2/(aZi)2]"+a. l +l 
, VvD .. -0 (n + 1 + au) 

+ 21raz; sin (a2i1r) 
V cos (a2i1r) 

X i: r(!)r(n + 31 + a2i)A!i [I - ~J .. +t+ ... / 
..-0 r(n + "3 + au) (az,) 

J 2 ,(r) = -M2i(r) 

+ 4; fa.d,-.'I dx XK2i {[(a2Y - x
2
Jl} 

X Q{[r2 - (aZi? + x2]ll. 

It can be shown that Eu(r) and all its derivatives 
are continuous at aZi. Thus, for a Type-II point at 
r = au, only M2iCr) contributes to the asymptotic 
expansion. 

These expressions of Mu(r) do not hold when 
au = n + !, where n is a positive integer. For these 
values of au, the derivatives of M 2. have logarithmic 
discontinuities. But when the effect of these log­
arithmic terms on the asymptotic expansion of the 
intensity is calculated by the method of Jones and 
Kline,7 one obtains the same results as are found 
by computing the asymptotic expansion for the 
scattered intensity for arbitrary au and then letting 
a2i = n + t. Thus this value of au does not need 
special treatment when one is concerned only with 
computation of the asymptotic expansion. 

For a function f(x) which in the neighborhood 
of point a can be written (for x > a), 

., (X2 ),,+a 
F(x) = E e .. 2" - 1 . ,,-0 a 

Erdelyi's theorem for the asymptotic expansion of 
Fourier integrals shows that the contribution of the 
point r a to the asymptotic expansion of the 
integral 

ljb h a dx F(x) sin hx 

7 D. S. Jones and M. Kline, J. Math. and Phys. 37, 27 
(1958). 
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is given by 

2 N-t d" ( n + a ) 
a ~ (hay-+2+a COS ha + -2-11' , 

where 

d = " 22m
+

a -"r(m + 1 + a)r(n + 1 + a) C 

.. ~ (n - m) !r(2m + a + 1 - n) ... 

Similarly, if in the neighborhood of point a the 
function g(x) can be written for x < a, 

'" ( x2),,+a 
g(x) = 1: C" 1 - '2 , ,,-0 a 

the contribution of point a to the asymptotic expan­
tion of 

Ii" Ii b dx g(x) sin hx 

is given by 

2 N-1 d" ( n + a ) 
-a ~ (haY'+2+a cos ha - -2-11' , 

where 

d" = r(n + 1 + a) 

X " (_I),,-"'22m+a-"r(1 + m + a)c .... 
.f.; (n - m)!r(2m + a + 1 - n) li 

[When g(x) is expressed as a power series 

'" 
g(x) = 1: b!(1 - xr+a, 

1-0 

this series can be rearranged to give, for x > 0, 

'" bl(1 - X2)1+ a 

g(x) = ~ (I + x)l+a 

'" b,(1 - x2)I+a 

~ ~ 11 + [I - (1 - x')]i}l+a 

= t (I - x2)"+a 
,,-0 r(n + a + I) 

X ~ (l + a)b1r(2n + a - 0. 
6 (n - o !22"+ a-I 

The Cn thus can be expressed in terms of the b". 
A similar procedure is possible for the c" in the above 
series for I(x).] 

Application of these results to the M j(r) and Nj(r) 
shows that the asymptotic expansion of the intensity 
l(h) has the form 

l(h) = loCh) + ItCh) + l,(h) + la(h), (3) 

where 

~ [( _1)kC~ + d2 cos (hvD + !k1l') 
f::'o (hlkH (hvDY'H 

+ b~ cos (hvD + t(k + t)1I')] 
(hvD)k+9/2 , 

ll(h) = t t b; sin (ha, - ir + "Ii + tk1l') 
i-1 k-O (ha,)5/2+k+&'j , 

l,(h) = t t d! sin (hai + "Ii + tk1l') 
,-1 k-O (hai)3+k+aj , 

where 

"Ii = (-1)i+1(!ai1l') 

0= 41r [2k + 1 R(2kl(0) _ r(!)r(k + t)(3(2k+1l(0)] 
Ck V vD tJ k!' 

b! = 211'(a,)3rmr(k + ! + ai)( _I)' 
V 

± 221 +&.,+!-k(_I)(i+1 l1 r(l + a, + I)A; 
X 1-0 (k - l)!r(! + ai + 2l - k) , 

211'(vD)3 r (k + t) 
V2 k 5/2r(!) b~ = 

X t rem + !)(VD)2m+1(3(2m+1l(o) 
",-0 (2m + I)! 

X k-m (_1)1221 +2mr(l + !) 
f,; (k - m - l)!r(2l + ~ + 2m - k) , 

41ri (vDlr(k + 3) k (vD)2"',8(2ml (o) 
V2k 

]; rem + !) 
k-m (-1)\2l + I)! 

X ~ (k - m - l)!l!(2l + 2m + 2 - k)! ' 

d' - 41r(aitr(k + 2 + ai) 
k - VvD2k 

X t (_1)(Hl)('+1l22 !+a'r(1 + l + a,)A; 
!-O (k - l)!r(2 + ai + 2l - k) , 

c~ _ 811'(ai)3r(k + 3 + a,)( _I)i 
- V2k - a , 

X ± (_I)(Hllmr(m + ai + I)A~ 
m-O ret) 

X kf (_1)1221
+

2m r(l + !{ 1 + ~T+m+3+&'i 
1-0 {vD)21+3 

(k+m-l)!r(2m+2l+3+a, - k)\~ 
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RIGHT CIRCULAR CYLINDERS 

For a circular cross sectionS of diameter D, 

41r'D 

P(x) = 1 - - ds (I - S2)t. 
1r 0 

Thus per) has a Type-II point at r = D, in the 
neighborhood of which 

Also, 

2 '" r(n + !) ( X2)"+! 
per) = 1rr(t) t; (n + !)n! 1 - D2 . 

(3(2a+1)(0) = _2_ (2n)!r(n - t). 
1rr(t) n!D2n+1 

Forn> 0, 

(3(2n) (0) = O. 

Thus, there are no Type-I points, and there is one 
Type-II point, at r = D, and with a = !. The 
only i value that need be considered in (3) is i = 2, 
and therefore, SUbstituting in (3) gives 

16(1 - cos lwD) N (-It+le~ 
loCh) = (hD)2(lwD)2 + ~ (hDYk+4 

+ b~ cos (lwD + t(k + !)1r) 
(lwDl+ 9/2 , 

b~ = 64v2 V2r(k + i) k [rem + tWv2m+l 
1r22k ~ (2m - I)m! 

k-m (_1)122m+21 r(l + !) 
X t; (k - m - 1) !r(21 + 2m - k + }) , 

b~ = 64(k + 2)! :t (_1)122Ir(1 + !)r(l + !) 
1rV2k 1-0 (k - l)!1!(21 - k + 2)! ' 

d2 = 32 r(k + !)r(k - !) V2 (k2 + 4k + ~) 
k 1rV2 2kk! 7 4 ' 

2 128r(k + -8-) V2 
Ck 1r22k 

x ± (-I)"'r(m + !)r(m + t) 
... -0 m! ---

• A. Guinier, et al., SmaU Angle Scattering of X-Rays, 
(John Wiley &; Sons, Inc., New York, 1955), Eq. (26), p. 17. 

k-m (_1)1221 +2mr(1 + !)(l + v2)I+m+9/2 

X ~ V21 +4(k _ m - l)!r(~a + 2m + 21 - k)' 

Note that at large h, l(h) is proportional to h-\ 
in agreement with the general prediction for the 
asymptotic behavior of the scattering intensity for 
solid particles. 

This property of the asymptotic expansion of the 
scattered intensity for right circular cylinders is a 
consequence of the result mentioned in the previous 
section which stated that the case au = n + ! 
produced no effects in the asymptotic expansion 
which were qualitatively different from the expres­
sions for general a2i' 

RECTANGULAR PARALLELEPIPEDS 

The function (3(r) for a rectangle with sides 21 and 
2m can be found by a two-dimensional analog of 
the procedure used to obtain H(r) for a cylinder 
of arbitrary cross section. From this calculation the 
ai, ai, and A; are found to be 

as = 21, as = 2, 

A~ = (-1)i+l1r(j + !)/1rmr(t)(j + 2)!, 

a~ = 2m, as =!. A: = (-I)I/1r(j + !), 
a7 = 2m, a7 = 2, 

A~ = (-I)i+ 1mr(j + !)/1r1r(t)(j + 2)!, 

as = 2W + m2)t, as = 3, 

A~ = [41r(j + 3)!rl[(12 + m2)/lm]3ai(1, m), 

i r(k + !)r(j _ k + !)(x2 + y2)i 
aiCx, y) = ~ rmr(!)x2ky2i 2k 

Also, (3(0) = 1, (3(l) (0) = - (1rlm)-l(m + I), p(2) (0) = 
(21rlm)-t, and all higher derivatives of (3(r) are zero 
at r = O. 

Substitution in Eq. (3) gives the asymptotic 
expansion 

l(h) = I.Ch) + lb(h) + leCh) 

+ ld(h) + l.(h) + ll(h) + l.(h), 

where 2n = vD, and 

l.(h) = 41r(mnltl(2ht'[rl(I - cos 2h1) 

+ m-1(1 - cos 2hm) + n-1(1 - cos 2hn)] , 

lb(h) = 8(lmntl(2htS[l sin 2h1 

+ msin 2hm + nsin 2hn] , 
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l.(h) = 24(lmnt2(2ht6[cos 2h1 

+ cos 2hm + cos 2hn - I], 

8 'II..! 
lih) = (lmn)(2hl V2 

X ~ [m + n cos [2h1 + !(k + tEJ 
f='o 8k mn (2h1)k+t 

+ 1 + n cos [2hm + !(k + !}ll"] ---zn- (2hm)k+t 

+ 1 + m cos [2hn + !(k + !}r]J 
1m (2hnf+t , 

r(k + t) k (-I)j22jr(j + !) 
8k = 2k rC!) ko (k - j)!r(~ + 2j - k)' 

8 'll"f 

l.(h) = (lmn)(2h)O V2 

~ [b (1 ) sin [2h(12 + m2
)i + !(k + !}rr] 

X 6 k' m [2h(12 + m2)1]k+t 

+ b ( ) 
sin [2h(m2 + n2)t + !(k + !)'II"] 

k m, n [2h(m2 + n2),y+! 

+ b (1 ) sin [2h(12 + n2)! + !(k + 1)'II"]J 
k ,n [2h(l2 + n2)t]k+! , 

b ( ) 
_ r(k + !)(X2 + y2)2 

k X, Y - x3y32k 

k ()' 2' ) X L: -1'2 'aj(x, y 
;-0 (k - D!r(} + 2j - k) , 

l,(h) = 8 
(lmn)2(2h)6 

~ [ cos [2hW + m2)t + tk'IT] 
X f=o ck(l, m) [2h(12 + m2)t]k 

cos [2h(m2 + n~i + !k'IT] 
+ ck(m, n) [2h(m2 + n2)t]k 

cos [2h(12 + n2)t + Ik'IT]J 
+ ck(l, n) [2h(12 + n2)I]k , 

(k + 4) I(X2 + y2? 
Ck(X, y) = 2kx2y2 

k (-I);22;a;(x, y) 
X ~ (k - DI(2j + 4 - k)I' 

l.(h) = 
8(12 + m2 + n2

)6 

(lmnt 

.. sin [2hW + m2 + n2)i + tk'IT] 
X ~ M1, m, n) [2h(12 + m2 + n2)t]k+7 , 

(k + 5)1 k (_1)"22'(12 + m2 +n2
)' 

M1, m, n) = 2k ~ (k _ 8)1(28 + 5 - k)! 

X 
~ ~ rei + !)r(j + !)r(8 - i - j + !) . 
~ ~ [rm]312im2;n2' 2, 2; 

The expression for l(h) is unchanged by permuta­
tions of 1, m, and n. This property is the result 
of the fact that for a parallelepiped, any face can 
be taken as the cross section. 

The first terms of this expansion reproduce Eq. 
(13) of Ref. 2 and also give the additional terms 
shown in the thesis from which the results of Ref. 2 
were taken. 

DISCUSSION 

In (3), loCh) is determined by the behavior of 
(3(r) at r = 0, while ll(h), 12(h), and la(h) depend 
on the nature of the discontinuities in the derivatives 
of (3(r) at the Type-I and Type-II points. The 
number of terms used in the asymptotic expansion 
is determined by the value of N. Ordinarily, in an 
asymptotic expansion, the last term retained (in this 
case, the term for which k = N) can be taken as 
at least a rough estimate of the error involved in 
using the asymptotic expansion to approximate the 
intensity. 

At sufficiently large h, the terms of k = 0 will 
dominate. If only these terms are considered, (3) 
becomes 

I (h) = ~ 1 - cos hvD + 2'11"P 
o VvD h4 VAh4 

+ ~ P (~)i cos (lwD + trr) 
V A 2vD h9/2 

, 

4'11" 
12(h) = - VvD (4) 

X ~ (-I)'2"'r(1 + a,)(a,)4A~ sin (ha, + ,) 
£.J (ha )",+3 • 'Y., ,-1 i 

4'11" 
la(h) = V 

.. (-I)'2"'r(1 + a,)[(a,)2 + v2 D2] 1 +<X ,/2 A~ 

X t; (a,)2 'H (vD)3h4 +<X , 

X cos {h[(aJ' + v2 D2]t + 'Y.} . 

Note that loCh) will always contain terms propor­
tional to h-4

, while the exponents of 11(h), ll(h) 
and la(h) in (4) will depend on the values of the a;. 

The terms in (4) which do not oscillate can be 
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written 

211" 2A + PvD 211"8 
V AvDh4 = (VYh4 

, 

where S is the total surface area of the generalized 
cylinder. When the normalization of I(h) is taken 
into account, this result agrees with the general 
expression given by Guinier, et al.8 

If all terms in I(h) are to decrease at large h, 
at least as rapidly as h-4

, then all the a. must be 
greater than or equal to !. For the cross-section 
shapes (circle, rectangle) for which tJ(r) has been 
calculated, the a. are found to satisfy this relation. 
It would be interesting to study tJ(r) to see how 
general this result is. 

The dependence of I(h) on the behavior of tJ(x) 
in the neighborhood of the Type-I and Type-II 
points suggests that it would be of interest to make 
more detailed investigations of the effect of the 

cross-section shape on the existence and nature of 
these points. It would be especially useful to study 
the properties of tJ(r) in the neighborhood of r = D, 
where, according to the form of tJ(r) for all cross­
section shapes which have been studied up to the 
present time, there is a very strong suggestion that 
a Type-II point will always occur. 

It should be emphasized that the asymptotic 
expansions which have been developed will approx­
imate the scattered intensity only at angles for 
which haj » 1 for all of the aj. For highly elongated 
or highly flattened generalized cylinders, which can 
be referred to as rods or platelets, respectively, there 
will be angles for which the condition haj » 1 is 
satisfied for some but not all of the aj. For these 
shapes, special techniques are necessary to calculate 
the intensity. A method applicable to rods is given 
in Ref. 2. Further study is necessary to develop an 
analogous technique for dealing with platelets. 
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Interacting Fermions in One Dimension. I. Repulsive Potential* 
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Department of Physics, University of California, Los Angeles, California 

(Received 21 July 1964) 

The exact energies and wavefunctions for the ground state and low-lying excited states of a system 
of N - lone-dimensional fermions all of the same spin and one fermion of the opposite spin are 
calculated in the large-volume, finite-density limit when the particles interact via a repulsive delta 
function potential. A number of properties of the system such as pair correlation functions and the 
effective mass of a certain class of excitations are also discussed. 

I. INTRODUCTION 

WE consider the Hamiltonian 

Ie N d2 N 

H = -2M t; dx2 + g L;>f: O(Xi - x;), 

which arises when N particles of mass M interact 
in one dimension with equal strength delta function 
potentials. The exact solubility and the scattering 
solutions of this Hamiltonian have been discussed 
in Ref. 1. In order to proceed systematically, how­
ever, it is advisable to discuss the nature of the 
solution briefly here. 

This Hamiltonian is viewed as discribing the 
interaction of a single particle with a fixed potential 
in an N-dimensional space where the coordinates 
of the N-dimensional space are the positions of each 
of the particles. The fixed potential in this mathe­
matically equivalent space is a series of intersecting 
N - 1 dimensional delta function sheets. These 
delta function sheets are arranged in this N-dimen­
sional space so that they are the boundaries of N! 
different regions where each region corresponds to 
one of the N! possible permutations of the particles 
along a line. We therefore call each of the permuta­
tions of the particles along the line a "region," for 
example the region x, < X2 < Xa ••• < XN. If we 
assume that we have N wavenumbers k, .. , kN, 
we may form in each region of space N! plane waves 
such as 

or 

This particular problem is soluble because it is 
possible to satisfy the differential equation by assum­
ing that the entire wavefunction is made up of a 

* Work supported in part by the National Science Founda­
tion. 

t Present address: Department of Chemical and Physical 
Sciences, Florida Atlantic University, Boca Raton, Florida. 

1 J. B. McGuire, J. Math. Phys. 5, 622 (1964). 

linear combination of N! possible plane waves in 
each region of space. 

As we have indicated above the delta function 
potential provides a barrier between regions of the 
multidimensional space. This barrier may be taken 
into account by replacing the delta function potential 
by a "two-sided" boundary condition. By integrating 
the Schrodinger equation over an infinitesimal region 
which spans the delta-function potential between 
particle 1 and 2 we find the well-known condition 

where we have chosen units so that Ii = M = 1. 
In the next section we show explicitly that this 
equation, plus continuity of the wavefunction is 
sufficient to determine the coefficients of the N! 
plane waves in any region given the values of the 
coefficients in some particular region. Although it 
is not obvious from this point of view, this process 
is internally consistent, that is, no matter how one 
calculates the coefficients in any given region the 
answer is always the same. This consistency is shown 
in a somewhat different form in Ref. 1. 

In the sense given above the wavefunction is 
determined provided that we know the coefficients 
of the N! plane waves in any particular region. 
We must now find the generalization of a scattering 
solution to a solution where the density of the 
interacting particles is fixed. This generalization has 
been carried out by Lieb2 when the fundamental par­
ticles are bosons. The finite-density limit for Fermi 
particles is more difficult. It is, in fact, the central 
difficulty which keeps us from working a more 
general class of problems than that which is pre­
sented here. The only known systematic method 
of procedure to obtain the finite-density limit is a 

2 E. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963). 
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[i(k l - k2)/V2][(12 .. ·N)2 - (21" ·N)2 - (12·· ·N)l 

+(21·· ·N)l] = V2g[(12·· ·N)l + (21" ·N)l]' 

And continuity of the wavefunction gives 

twofold process: (1) apply periodic boundary condi­
tions to a scattering solution for a fixed number 
of particles; (2) allow the size of the periodic box 
and the number of particles to become infinite in 
such a way that the density remains a constant. 

II. APPLICATION OF PERIODIC BOUNDARY 
CONDITIONS TO A PARTICULAR PROBLEM 

Let us now consider a special case of the previous 
general problem of N particles, namely that in which 
N - 1 of the particles are spin-up fermions and 
one particle is a spin-down fermion. Let us choose 
Xl to be the coordinate of the spin-down fermion. We 
call region 1 the region where Xl < X2 < Xa • •• < XN, 
that is the region which has the particles all in order 
with the different particle on the left. All of the 
particles 2 ... N are indistinguishable so we must 
antisymmetrize the wavefunction in this region to 
take this into account. 

Consider the particular plane wave 

exp [i(k1xl + k2X2 + kaxa + ... + kNxN)]; 

let its amplitude be denoted by (1 2 3 ... N). [From 
now on we write, e.g., (1 2 3 ... N) as (123 .,. N) 
for compactness. As no mulitple-digit numerals are 
used in these expressions, there should be no con­
fusion.] Similarly the amplitude of the plane wave 

exp [i(k~l + k7X2 + k4Xa + ... )] 
would be denoted by (974 ... ). 

The order of the numbers inside the parenthesis 
dictate which particle has which k. The k in the 
first slot goes with the first particle, the k in the 
second slot goes with the second particle, etc. 

Antisymmetry of the wavefunction dictates that 

(123·, ·N) = -(1324·· ·N) = (1342·· ·N) = etc. 

That is, all of the coefficients which have "1" in the 
first slot differ from the first amplitude only by a 
plus or minus sign, according to whether they are 
an even or odd permutation of the numbers 2 ... N. 
Similar relations hold among the amplitudes which 
have any number in the first slot. 

Now let us calculate the amplitudes in the next 
adjacent region. Let us consider the interaction of 
particles 1 and 2 and calculate the wavefunction in 
the region X2 < Xl < Xa < X4 ... < XN, which we call 
region 2. The amplitudes must go together in pairs of 
the type (1 2 some permutatiOn) and (2 1 sam. permutatiOn) 

because this pair have exactly the same dependence 
on Xa ••• XN when Xl = X2' Any other plane wave 
will have a different dependence. 

Now using Eq. (2) 

(12" ·N)l + (21·· ·N)l = (12·· ·N)2 + (21" ·N)2' 

Solving these two equations for the amplitudes in 
region 2 gives 

[
(12, 'N)] = [1 + 1/812 1/812 J[(12' ·N) ] 

(21· ·N) 2 -1/812 1 - 1/812 (21· ·N)2 1 

where 8 12 = i(kl - k 2 )/g. 
We could have gone through a similar calculation 

for any pair of adjacent particles, but for the 
indistinguishable particles the result is trivial. If 
the particles which pass through one another are 
of the same spin the amplitudes on the right-hand 
side of the expression above will be equal and 
opposite by antisymmetry. It is then easily seen 
that the amplitudes in the next adjacent region are 
exactly the same as in the first region. This means 
that we can move the spin up particles through 
one another at will, a manifestation of the fact that 
these particles do not interact because the exclusion 
principle makes the wavefunction zero when any 
two particles of the same spin come together. 

III. APPLICATION OF PERIODIC BOUNDARY 
CONDITIONS 

We now wish to apply the condition 1/;(0) = 1/;(L) for 
everyone of the N particles. In this particular prob­
lem where N -1 particles are spin up and one particle 
is spin down there is a short-cut way of doing this. 
H we start in region 1 (Xl < X2 < Xa •.• < XN) we 
can carry X2 through all of the other spin-up particles 
with no change in the amplitudes of the plane waves. 
Let us call the region Xl < Xa < X4 •.. < XN < X2 
region q. The only way the periodic boundary con­
ditions may be satisfied is to satisfy periodicity for 
each plane-wave component independently, again 
because any other plane-wave component would have 
a different dependence on the coordinates of the 
other particles. Thus two typical relations which 
must be satisfied are 

(123·· 'N)2 = eik
•

L (123·· ·N)., 

(213" ·N)2 = eik ,L(213·· ·N) •• 

The exponential phase factors arise from setting 
X2 = L in region q. But we have already argued 
that every plane-wave amplitude in region q is the 
same as every plane-wave amplitude in region 1. 
Thus we may rewrite these relations as 
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[
e'k'L(123' .. N)l] [(123' .. N)2] 
e'k,L(213·· ·N)l = (213·· ·N)2 

[
1 + 1/812 1/812 J[(123" 'N)I] 

= -1/812 1 - 1/812 (213" ·N)t . 

We now have a pair of homogeneous equations 
in the amplitudes (123 ... N)l and (213 .. , N)l' 
These equations are inconsistent unless the deter­
minant vanishes, thus 

1

1 + 1/812 - e'k,L 1/812 I = O. 

-1/812 1 - 1/812 - e'k,L 

Notice that this determinant vanishes auto­
matically if klL and k2L are integral multiples of 
2'11". These solutions are the usual all spin-up solutions. 
Expansion of this determinant yields 

812 = (eik,L _ eik•L)/(1 _ eik•L)(1 _ e'k,L) 

= i(k l - k2)/y, 

which can be put in a more convenient form 

ikl/g - !i ctn !klL = !ik2/g - !i ctn !k2L, 
if 

Z, = !k,L a = 4/yL 

azl - ctn Zl = az2 - ctn Z2. 

Clearly any pair of velocities may be chosen as the 
pair with which particles 1 and 2 interact. All of the 
relations among velocities could then be summarized 
as 

= aZN - ctn ZN' 

One additional piece of information is necessary 
to determine the spectrum. This information may 
be obtained by applying periodic boundary condi­
tions to Xl as the different particle moves from 0 to L. 
As we move Xl from region to region through the 
various spin-up particles we focus our attention on 
the amplitude of a given plane wave and notice 
that this plane-wave amplitude is multiplied by a 
phase factor for each region change. That phase 
factor is determined by the velocity of the particle 
through which we carried Xl' For example 

(1234·· ·N)2 = e,k.L(123·· ·N)l, 

(123· .. N)3 =e,k.L(123· .. N)2 =eilk.+k.) L(123· . ·N)l' 

where region 3 is X2 < Xa < Xl < X, ... < XN' As 
we carry Xl from 0 to L we get one phase factor 
for every k value except the one associated with Xl' 

Thus in region N (X2 < Xa < x. . .. < XN < Xl) 

N 

(123, .. N)N = (123 .. 'N)l exp iL L k,. 
i-2 

Periodicity of the wavefunction requires that 

e'k,L (123· .. N)N = (123·, N)t. 

Thus 

L k,L = 2n'll" ••• n = any integer, 

or 
N 

exp i L k,L = 1, 
i-1 

which is, in terms of the z's, L z, = n'll". 
In addition to this law for the allowable values 

of k, we may also find the ratio of the amplitUdes 
which is dictated by the homogeneous equations. 
This ratio is 

(123·· ·N)1/(213·· ·N)l = -(1 - e,k,L)/(1 _ e,k.L). 

Similar ratios would, of course, be found no matter 
what pair of velocities we assumed for particles Xl 

and X2' 
All of these properties of the periodic solution 

may be summarized in the following set of rules: 

(1) The spectrum is given by selecting N roots 
of az - ctn Z = const. subject to the additional 
constraint that L z, = n'll". 

(2) The wavefunction is given by calculating the 
amplitudes of N! plane waves in each region of space. 

We select as the basic amplitude 

(123·· ·N)l = 1 - e'k,L = _2ie"k,L sin !klL 

where as always region 1 is Xl < X2 < Xa ••• < XN' 
The amplitude of any other plane wave in this region 
is determined by two things: (a) the k associated 
with particle 1 determines which k is to be used in 
the amplitude (b) the amplitude is modified by a. 
plus or minus sign according to whether it is an 
even or odd permutation of the state above. 

For example, 

(q23·· ·1·· ·N)l = -(1 - e,k.L) = +2ie'··sinzq • 

(3) The amplitude of a given plane wave in some 
other region is calculated by first finding the ampli­
tude of that plane wave in region 1 and multiplying 
this amplitude by a factor of e2i 

•• for each particle 
that Xl has passed. 

For example in the region 

X2 < Xa < X, < Xl < X6 ••• < XN 

(q234 ... 1 ... N) = -(1 - e,k.L)e2H •• + •• + •• 
,

• 
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IV. GROUND STATE OF THE SYSTEM AT 
FIXED DENSITY 

Now that we have developed this set of rules we 
may proceed to the calculation of the ground-state 
energy of our many-fermion system. We want to 
choose the lowest N roots of the equation 

az - const = ctn z, 

subject to the additional constraint that the sum 
of these roots is n'll". If N is even, we achieve the 
lowest energy if the value of the constant is zero. 
This is easily seen in Fig. 1 which is a sketch of the 
graphical solution to this transcendental equation, 
and will be demonstrated numerically in the next 
section where we calculate the excitation spectrum. 
The sum condition on the roots is satisfied identically 
under these conditions because the sum of the roots 
is zero. 

We need only consider the solutions of the above 
transcendental equation where a is very small, be­
cause a is the dimensionless product of the scattering 
length of the delta function potential divided by 
the length of the box, which is to be a small number 
in the infinite length limit. 

We can see from Fig. 1 that for small a the roots 
are separated by an interval which is almost'll". 
If the separation were exactly'll" we would recover 
the Fermi energy for N particles. For small values 
of z, the roots occur very near z = (n + t)'II", n = 
any integer. If the number of particles is large 
enough that N a'll" is much greater than unity, we 
see that the high values of z occur at integral 
multiples of'll". 

It may be easily seen graphically or verified by 
a repeated substitution process that the sth positive 
root of our transcendental equation is 

s = 0, 1, .•. , (!N - 1) 

and the sth negative root is 

z; = -S'll" - ctn-1 (sa'll") s = 0, 1, ... , (!N - 1) 

to order a2
, which is sufficient for our purposes. 

In our units, n = M = 1, the energy is 

E = ! L k~ = (2/L2) L z~, 
where the sums run over the occupied states. In the 
ground state this leads to 

2 [ iN-l !N-l 

= L2 2 ~ S2'11"2 + 4 ~ S'll" ctn-1 (sa'll") 

+ 2 i~l [ctn-1 (sa'll")]2 J. 
The first term in this sum is the energy of a Fermi 

FIG. 1. Sketch of the graphical solution to the equation 
az - ctn z = o. 

gas containing N - 1 particles, the second term 
is an energy shift caused by the interaction of the 
spin down particle with the N - 1 spin-up particles, 
and the third term is negligible to order 1/ L. The 
total energy is, therefore, 

E = E(N - 1) + llE 
8 !N-l 

llE = L2 L S'll" ctn-1 sa'll". .-0 
We convert this sum to an integral by the usual 
techniques and obtain 

8 12kF,q 

llE = 2L2 X ctn-1 X dx, a 'II" 0 

where kp is the Fermi momentum for the N - 1 
particles 

kp = (N - !)'II"/L. 

Finally, we obtain 

llE = k; [JL + tan-1 JL 
'II" 2kF 2kF 

The first three terms of the energy shift for weak 
interactions (or high density) are: 

llE = kFg/'II" - II + g3/12'11"kF. 

These three terms are identical with those ob­
tained by Bethe-Goldstone perturbation theory. a 

Notice that all even powers but the second vanish. 
The same formula also holds for the attractive case 
g < 0, as is shown in a subsequent paper. 

For strong interactions (or low density) the energy 
shift is E = !k;, or the energy required to add one 
particle at the Fermi surface. This result would be 
antiCipated from the work of Girardeau,4 who showed 
that particles interacting with infinite strength delta 

a B. Day (private communication) (to be published). 
«M. D. Girardeau, J. Math. Phys. 1, 516 (1963). 
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function potentials in one dimension have a Fermi­
like ground state independent of statistics. 

V. EXCITATION SPECTRUM OF THE SYSTEM 

There are two distinct ways to excite this system. 
The first is the familiar way in which a noninter­
acting Fermi sea is excited viz., leave one of the 
states of az = ctn z unoccupied and occupy a higher 
state. If we characterize the excited states by the 
total momentum k, where 

k = (2/L) .L:Zi' 

the excitation energy of such a state is 

Eex = kFk. 

A more interesting class of states is the class 
which exhibits collective excitations, or those excita­
tions which depend upon the interactions. These 
states arise when we consider solutions to az -
ctn z = const., where the roots occur on the same 
branches of the cotangent curve, but subject of 
course to the restriction that .L: z. = n7r or k = 
(2/L).L: Z; = 2n7r/L. We can calculate the spectrum 
for these states by first calculating the energy as 
a function of the constant e which appears in the 
spectral law and then eliminating e as a function 
of k. We now imagine graphically solving the equa­
tion az - e = ctn z, using the same branches of 
the cotangent curves which were used in solving 
for the ground state. In the same manner as before, 
and to the same order of approximation we have 
(with S = 0, 1, '" , N /2 - 1) 

z, = S7r + ctn- l (sa7r - e) 

for all roots z. > 0; 

z, = -S7r - ctn- l (sa7r + e) 

for all roots z, < O. 
Let us first calculate k as a function of e. 

k = (2/L) .L: Zi 
N12-l 

= (2/L) .L: ctn-1 (sa7r - e) - ctn- l (sa7r + e) 
,~O 

converting the sum to an integral we have 

2 12k Fig 

k = -L [ctn- l (x - e) - ctn- l (x + e)] dx, 
a7r 0 

which may be written 

j2kFIU+ C 

k = -2
g 

tan- l u duo 
7r 2kFIg-c 

This integral may be done in closed form, and would 
provide a transcendental relationship between e and 
k. Let us, however, focus our attention on the states 

of small e (and hence small k) which will be the low­
lying states of this system. If we approximate the 
integral for small e we find 

k = -(ge/7r) tan- l (2kF/g). 

This small e approximation is internally consistent 
because the first state of this type occurs when 

.L: Z; = iLk = 7r = -(gLcl /27r) tan- l (2kF/g), 

or when 

e1 = gL tan 1 (2kF/ g)' 

which means that the first solution of this type 
occurs when e is small even when g --} co. 

Notice that in the high-density limit we obtain 

The intercept of the line 

fez) = az - el 

occurs when 
z = el/a = -7r, 

which means that in this limit the first excited state 
z's occur at the intersections given by the dotted 
line in Fig. 1. We shall use this fact later to help 
describe the wavefunction of these states. 

Now we must calculate the energy as a function 
of e. 

E = (2/L2
) .L: z~ 

and, substituting for the z's we find 

4 N12-l 4 N12-1 

= L2 ~ S27r
2 + L2 ~ s7r[ctn- 1 

(sa7r + e) 

+ ctn-1 (sa7r - e)] + O(L- l
). 

Again the first term is the energy for a Fermi gas 
of N - 1 particles. We must now calculate the 
energy shift as a function of C. 

4 N12-l 

!lE(c) = L2 ~ s7r[ctn- l (sa7r+c)+ctn- l (sa7r-c)]. 

As before we change the sum to an integral 

4 12k Flu 
!lE(c) = L~ [x ctn-1 (x + e) 

a 7r 0 

+ x ctn- l (x - c)] dx. 

This integral also can be done in closed form, but 
the closed form result is difficult to interpret. We 
use a power series expansion in e to obtain the 
excitation spectrum in a simpler form which applies 
where e (and k also) is small. To zeroth order in e 
we of course obtain the expression to the energy 
shift which was calculated in the previous section. 
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It is also easy to see that the first order term in c 
vanishes. The second order term in c is 

8c
2 12kF

" X2 dx 
llE2(C) = L 2a211' 0 (1 + X2/ 

= .iL [tan-1 2kF _ 2kF/(1 + 4k:)J. 
L 2a2

11' g g l 
Now we eliminate c in favor of the total momentum 
of the state. 

llE (k) = k
2

11' tan- l 2kF _ 2kF/(1 + 4k/) 
2 4 g g g 

X [tan- l (2kF /g)r 2 

Thus the energy of these excitations is quadratic in 
the total momentum, which means that we can 
identify an effective mass for these excitations from 
the relation t:.E = 1/2m*k2. Thus the effective mass 
of these excitations is 

m*=; [tan- l 2:F T[tan- l 2:F -2:F / (1 + 4:1) l~ 
For weak interactions (high density) m* = 1, 

the effective mass is thus just the mass of one of 
the elementary fermions. For strong interactions 
(low density) the mass becomes infinite and the 
energy is independent of the total momentum of 
the state, as would be anticipated because of the 
Fermi-like nature of the wavefunction in the strong 
interaction limit. 

VI. DISCUSSION OF THE WAVEFUNCTION OF 
THE SYSTEM 

In order to describe the nature of the wavefunc­
tion we must return to the rules for the calculation 
of the wavefunction. The amplitude for the basic 
plane wave in region 1 is 

(12·· ·N)l = -2M" sinz i • 

The amplitude for this plane wave in any other 
region is some phase shift times this amplitude. 
If we ask for the relative probability that we can 
associate the wavenumber kl with particle 1 in 
region 1 the answer is 

1(12 .. ·N)lI2 = 4 sin2 
Zi' 

Since the amplitudes in region 1 differ from the 
coefficients in all other regions by only a phase shift, 
the probability that we can associate wavenumber 
kl with particle 1 is independent of the region. 
Thus the relative probability that we can associate 
k" with particle 1 is 

I(n· .. W = 4 sin2 ZIt = P(Z,.). 

Notice that this number is of order unity when z" is 
near n1l'/2 and small when z" is near n1l'. 

In the ground state all of the z,. satisfy the relation 

az,. = ctnz,., 

thus 

• 2 1 1 1 
sm z,. = 1 + ctn2 z,. = 1 + a2z! = 1 + 4k!/ g2 

hence 

Thus, without attempting the formidable task of a 
Fourier transformation, we have the rough inter­
pretation that the different particle has relative 
probability P(k) to occupy any momentum state 
within the Fermi sea. 

The excited states may be shown, by the same 
line of reasoning, to represent translations of this 
probability by an amount K. That is the excited 
state occupation probability is 

P(k, K) = g2/[ig2 + (k - Kl]. 

Thus the different particle tries to drop to the 
center of the Fermi sea, but the interaction makes 
it advantageous for the particle to distribute itself 
about zero momentum in momentum space. The 
normalized distribution would tend to a delta func­
tion of k as g tends to zero and becomes uniform 
when g » 2kF • From the calculation of the allowable 
values of the constant we see that the excited states 
correspond to giving the different particle some 
average velocity, and the excitation energy is pro­
portional to the square of that velocity. The effective 
mass of the particle is, however, increased by the 
interaction. 

VIT. PAIR CORRELATIONS IN THE 
GROUND STATE 

As a final example of the calculations which may 
be made on this exactly soluble problem we con­
sider ground-state pair correlations. The most in­
teresting question is to ask the relative probability 
to find anyone of the spin-up particles in the vicinity 
of the spin-down particle. We will try to calculate 

p(xl , X2) = J ... J dXa ••• dXN 

X 1/;* (Xl ••• XN) 1/;(X I ••• XN). 

We choose X2 arbitrarily, since all of the spin-up 
particles are indistinguishable. 

Let 1345 .•• NI denote the Slater determinant 
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eikaz , eikaz6 eiklzIJ 

eil'6Z 1 e,k4,Z 6 

eik,zl eik6Z
f, 

We may now write the wavefunction as 

W = [(12·· ·N)l e'(k,z,+k.z.) + (21 .. . N)l ei(k'Z,+k,z.J] 

X 1345·. ·NI + [(312·· .N)l eiCk.z,+k,%.) 

+ (12·· 'N)l e'(k'Z,+k.z.)] 1245·· ·NI + ... 
in the region Xl < X2, X3; X4 •••• XN :::; Xl + L. If 
we now form 'l1*w and integrate over all of the 
x's but Xl and X2 each of the Slater determinants 
are orthogonal in the large volume limit, because 
they represent Fermi wavefunctions of different 
energy. Furthermore each of these Slater deter­
minants have the same normalization. 

We can simplify our calculation of the pair cor­
relations if we make no attempt to keep track of the 
normalization of the wavefunctions and choose some 
convenient normalization after we have the form 
of the correlation function. If we agree to calculate 
the correlation function in an unnormalized form 
we see from the argument above that the entire 
dependence on Xl and X2 may be calculated con­
sidering only the sum of the contributions for each 
pair of k's assigned to particles 1 and 2. A particular 
elementary contribution would be 

f12(x1, X2) = 1(12·· ·N)112 + 1(21·· ·N)d2 

+ (12·· ·NM21·· .N),t e'(k,-k.)(z,-z.) 

+ (21· . . NMI2 . . . N)te-m,-k a ) (Z,-z'), 

which is only a function of Xl - X2, as expected. 
Let us now calculate the unnormalized correlation 
function by putting in the explicit values of the 
amplitudes obtained from the wavefunction rules. 
If we let x = Xl - X2 we obtain 

N 

f(x) = E E f., = E E [4 sin2 z. + 4 sin2 z, 
.>& .>t 

where the sums are understood to be over occupied 
states of z. This sum may be rearranged so as to read 

N I N 12 f(x) = 4N 2: sin2 z. - 4 E ei 
•• sin z. eik

.% • 
a-I .-1 

Again we use our large-volume formulas for the z's 
in the ground state 

S =O 1· .. N/2-1 '" , 

z; = -Sr - ctn- l sar, s = 0,1, ... N /2 - 1. 

Making this substitution into the first term of f 
leads to 

N N/2-l 1 
fl = 4N E sin

2 
Z. = 8N E ( )2 + 1 .-1 .-0 sar 

8N 12kF
/. 1 8N _12kF = - -2--dy = -tan -. 

ar 0 y + 1 ar g 

Now we calculate the second term, making use 
of the relation 

k. = 2z./L 

I
N/2-l X 

Mx) = 4 E ei 
•• + sinz; exp 2iz;-L 

.-0 
N/2-1 \2 + E eh

.- sin z: exp 2iz; -LX , 
.-0 

substituting for the z. 

I
N/2-l 1 X 

= 4 E . exp 2i -L (sr + ctn- l sar) .-0 sa1f' - ~ 

N/2-1 1 12 - E + . exp - 2i -LX (81f' + ctn- l 
sa1f') • .-0 sar ~ 

The term in the exponential which involves the 
inverse cotangent is negligible to order I/L. We may 
thus write a single sum 

. I N/2-1 1 . xI2 
Mx) = 4 E . exp 2~81f' -L ' 

.--N/2+1 sar - ~ 

which may be converted to the integral 

4 I 12kF/

> 1 . 12 Mx) = 22 --. ei •• zv dy . 
~ 1f' -2kF/> Y - ~ 

finally we may write the normalized correlation 
function 

p(x) = 1 - Mx)//t 
= 1 - [(8k F /g) tan-1 (2k F /gW1Q*(x)Q(x), 

where 

1
2kF/> 1 

Q(x) = --. eii•ZY dy. 
-2kF/. Y - ~ 

This entire calculation of the ground-state pair 
correlation function has assumed that we are in 
region 1 where Xl < X2 or X < O. If we were to 
calculate the same function in region 2 where x> 0, 
we would find that we would have the reflection of 
this function about the point X = O. This is not 
difficult to show from the rules for calculating the 
wavefunction in region 2. We must recognize, how­
ever, that this explicit form of the correlation func-
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tion requires that x < O. This requirement on x 
implies that any contour integration must be close? 
so that 1m y < 0 which excludes the pole at y = ~. 

The function Q may be written in terms of 
tabulated functions, but these functions are not 
particularly familiar, so let us discuss first the low-
and high-density limits. . 

For low density (g ~ co), y may be neglected ill 
comparison to i over the entire range of integration 
and one obtains 

= 1 - ([SkF / g' 2kF/ gTl) Ii 12kF

/

g 

e;;gZg dy j2 
-2kF/. 

= 1 - (16kF2/lr1 14i sin kFx/gxI
2

• 

= 1 - I(sin kFx)/kFx!2 

This result again would be anticipated from the 
work of Girardeau, since this is just the one dimen­
sional analog of the "Fermi hole." In the opposite 
extreme (g ~ 0) we may approximate 

Q = -2i·l'" sin (!gxy)/y dy = 2i·si(kF x) 
2kF/g 

which leads to 

p = 1 - (g/kF'II")(si(kFX)]2 

The complete form of Q in terms of the most 
generally available tabulated function6 is 

Q(x) = i- 1e,DX[E1([g/2 - ikF]x) - E 1([g/2 + ikFJx)], 

where 

E1(z) = ~ duo f
eo .. 

• u 

Figure 2 shows a plot of this correlation function in 
the two extreme cases. 

As one would expect, the stronger the potential 
the more the ground-state pair correlation deviates 
from background. As a measure of the depth of the 
deviation from background we can calculate the 
value of the pair correlation function where x = O. 

1
21<1,11 1 

Q(O) = --.dy 
-2kF/g Y - 1. 

thus, 

p(O) = 1 - (g/2kF) tan- t (2kF/g). 

The width deviation from background may be 
estimated by calculating the first zero of Q(x). This 

Ii Tables of the ExpoTUmtial Integral for Complex Arguments 
(National Bureau of Standards Applied Mathematics Series), 
(U. S. Government Printing Office, Washington, D. C., 
1958), Vol. 51. 

1.0 .., 
c e 
~ 
u 
0 
.0 . .S g .. 
.!! ---- g/2kF ., .r 
~ ... 
0 

g/2kF Q, -- -<0 
Q, .6 :> 
I 
c 
'0. 
fI) 

'0 ,., 
.~ 

.4 c: .. .., 
.., .. 
.!:! 
"6 
E 
~ z .2 

Distance from spin-down particle x kF 

FIG. 2. Normalized ground-state pair correlation functions. 

first zero is found to lie between kFx = 1.927+ 
(small-strength limit) and kFx = 'II" (large-strength 
limit). Thus as the strength of the interaction 
decreases the deviation from the background be­
comes shallower and narrower. 

VW. DISCUSSION OF RESULTS 

The introduction of a single spin-down fermion 
into a Fermi sea of N - 1 spin-up fermions has 
been shown to cause an energy shift which depends 
upon the interaction strength. It is always true, 
however, that the total ground-state energy of the 
N particles lies between the ground-state energies 
of Nand N - 1 fermions of the same spin in the 
same size box. Therefore it is an energetic advantage 
to have one of the spins reversed. It has been shown 
to be more of an advantage to reverse the spin of 
two particles,6 and in fact the ground state of the 
system with N particles should have N /2 spin-up 
and N /2 spin-down. It is hoped that the results 
of this paper will provide some sort of a first step 
towards solving this important problem. 

In a subsequent paper we will extend our results 
to the case of an attractive potential which is 
considerably more complicated, and also more in­
teresting because of the presence of a bound state. 

6 E. Lieb and D. Mattis, Phys. Rev. 125, 164 {1962}. 
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Statistical Ensembles of Complex, Quaternion, and Real Matrices 
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Statistical ensembles of complex, quaternion, and real matrices with Gaussian probability distri­
bution, are studied. We determine the over-all eigenvalue distribution in these three cases (in the 
real case, under the restriction that all eigenvalues are real). We also determine, in the complex case, 
all the correlation functions of the eigenvalues, as well as their limits when the order N of the matrices 
becomes infinite. In particular, the limit of the eigenvalue density as N -> co is constant over the 
whole complex plane. 

INTRODUCTION 

I N order to obtain a theoretical description of 
highly excited regions of heavy-nuclei spectra, 

several authorsl
-

6 have developed a theory of statis­
tical matrix ensembles. The energy levels are the 
eigenvalues of the Hamiltonian H, which is regarded 
as an Hermitian matrix of very large order N. In 
the absence of any precise knowledge of H, one 
assumes a reasonable probability distribution for its 
matrix elements, from which one deduces statistical 
properties of its spectrum. An important simplifica­
tion followed the introduction of unitary instead of 
Hermitian matrix ensembles.4 However, the physical 
origin of the problem-more precisely, the need to 
interpret part of the spectrum of a matrix as part 
of the energy spectrum of a physical system-has 
restricted the attention to matrix ensembles whose 
spectrum is contained in a one-dimensional line of 
the complex plane (the real axis for Hermitian, the 
unit circle for unitary matrices). In the present paper 
we study the eigenvalue distributions of matrix 
ensembles for which any point of the complex 
plane may belong to the spectrum. Apart from the 
intrinsic interest of the problem,6 one may hope 
that the methods and results will provide further 
insight in the cases of physical interest or suggest 
as yet lacking applications. 

The definition of matrix ensembles consists of 
two parts: 

(1) The definition of an algebraic set of matrices 
Z. We shall consider: C, complex N X N matrices; 

* Permanent address: Laboratoire de Physique Theorique 
et Hautes Energies, Orsay, Seine et Oise, France. 

1 E. P. Wigner, Ann. Math 53, 36 (1951); 62, 548 (1955); 
65,203 (1957); 67,325 (1958). 

2 c. E. Porter and N. Rosenzweig, Ann. Acad. Sci. Fen­
nicae. Ser. A VI. No. 44 (1960). 

3 M. L. Mehta, Nucl. Phys. 18, 395 (1960); M. L. Mehta 
and M. Gaudin, ibid., p. 420. 

• F. J. Dyson, J. Math. Phys. 3, 140, 157, 166 (1962). 
6 F. J. Dyson, J. Math. Phys. 3, 1199 (1962). 
& F. J. Dyson and M. L. Mehta, J. Math. Phys. 4, 701, 

713 (1963). 

Q, quaternion N X N matrices; R, real N X N 
matrices. The order is that of increasing difficulty. 
These are the Z's of Dyson's classification (Ref. 5, 
especially Theorem 7) and they can be characterized 
as the only irreducible matrix algebras over the real 
field [Refs. 5, 7 (especially Chap. 3)]. 

(2) The choice of a measure or probability dis­
tribution on Z. Z is a finite-dimensional vector space 
over the real field. The linear measure dP.L which 
suggests itself naturally, is not suited for a prob­
abilistic interpretation, for the measure of the whole 
space is infinite. We choose instead 

dp.(S) = dP.L(S) exp [-(lj4a2
) Tr sts] (0.1) 

(S generic element of Z, a = real positive constant) 
which satisfies the two properties: 

(i) It is invariant under the adjoint representation 
of Zu, where Zu is the group of unitary matrices 
in Z. More precisely, for any U E Zu, 

dp.(S) = dp.(U t SU). 

(ii) The matrix elements of S are statistically 
independent. 

These two properties are likely to determine dp.(S) 
uniquely.2 We study the three matrix ensembles 
thus obtained Zc, ZQ, and ZR in Secs. 1, 2, and 3, 
respectively, with decreasing success. We obtain for 
Zc the over-all eigenvalue distribution and all the 
correlation functions of n eigenvalues (1 ~ n ~ N); 
for ZQ the over-all eigenvalue distribution only; 
for ZR the over-all eigenvalue distribution in the 
restrictive case where all eigenvalues are real. 

1. COMPLEX MATRICES 

Z is the algebra of complex N X N matrices 
S = (S.;). The linear measure is defined by 

dP.L(S) = II dSij dS;~, (1.1) 
i. i 

7 H. Weyl, Classical Groups (Princeton University Press, 
Princeton, New Jersey, 1946). 

440 
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where dz dz* means 2 dx dy if Z = x + iy, z* = x - iy. 
dp.(S) is defined by (0 - 1). 

From now on, we take 4a2 = 1. We define the 
eigenvalue distribution PN(Zil .. , , ZN) by 

f dp.(S) = PN(Zl, ... ,ZN) IT dZi dz~, (1.2) 

where z. (i = 1, "', N) are the eigenvalues of the 
generic element S E Z. 

f means: for fixed (Zi), integration over all other 
variables. We now compute P N' Any S E Z with 
distinct eigenvalues (we forget matrices with two 
equal eigenvalues, which form a set of measure 0) 
can be diagonalized 

(1.3) 

where A is diagonal with Aii = Zi, and X is regular 
and is defined modulo multiplication on the right 
by any element of the commutator a' of A. a' 
consists of all complex diagonal matrices. The cor­
respondence S ~ (A, X mod a') is 1 ~ N! because 
there are N! ways to order the eigenvalues. 

Infinitesimal variations dA, dX of A, X produce 
a variation dS of S 

dS = X(dA + [dR, A])X-\ (1.4) 

where dR = X-ldX. From (1.4) and the invariance 
property: dP.L(S) = dP.L(XSX- l ) for any regular 
X E Z, we get 

dP.L(S) = II dZi dz~ II [dR, A]i;[dR, A]i~' (1.5) 
i iF; 

dP.L(S) = IIdzidz~ II JZi-Z;J4 IIdRi;dRi~.(1.6) 
i i<i iF; 

is a unimodular subgroup 'Y of g. V is diagonal 
with real positive elements. The set of these matrices 
is also a subgroup '0 of g. 

(In other words, we have decomposed 9 as the 
product of three subgroups Zu, 'Y, and '0. None of 
them is invariant and this decomposition has no 
simple algebraic property. However, it will provide 
a useful decomposition of dp.o(X). 

Proof: Any set xa (a = 1, ... , N) of N linearly 
independent vectors can be brought by a unitary 
change of basis into a form where the components 
X~ satisfy X~ = 0 for j > a. We apply this to the 
column vectors of X and obtain X = U 1 Y 1 with 
U l unitary and Y l triangular. Y l can then be written 
as Y l = UoYV with Y and V as above and Uo 
diagonal and unitary. Therefore X = UYV with 
U = Ul U O. If now X = UYV = U'Y'V', then 
B = U,-lU = Y'V'V-ly- l is unitary (left-hand 
side) and triangular with real positive diagonal 
elements (right-hand side); therefore B = 1, and 
the decomposition is unique. 

We now change the variables in dp.o(X) from dR 
to dU, dY, dV. We start from 

dR = X- 1 dX = V-1 dV + V-1Y-1 dY V 

(1.10) 

The first term contributes to the real part of the 
diagonal elements; The second term, to the dR;; 
with i < j. In the third term, dL = -iU-1dU is 
Hermitian. From Y E 'Y, y- l E 'Y it follows that, 
for i ~ j, 

(y-1 dL Y)ii = dLii + (linear combination of dLkl 

We substitute (1.6) into (1.2) and get 

PN(Zl, ... ,ZN) = N
1

, n JZi - Z;J4 J, 

with k - l > i - j). 

(1.7) It follows from these remarks that 

(1.11) 

. s<, 

where dp.o(X) = dp.o(U) dp.o(Y) dp.o(V), (1.12) 
where 

J = J IJ dR;; dRi~ exp [-Tr sts]. (1.8) dp.o(U) = II dLii dLfi II dLii = II dL;;, (1.13) 
'~I 

dp.o(X) = IIi.; dRii dRi~ is the invariant measure 
on the group Gl(N, C) which we note simply 9 
and II';"i dRii dRi~ is the quotient measure on 
gla' (which is not a group). We need the following 

Lemma: Any X E 9 can be written in one and 
only one way as 

X = UYV, (1.9) 

where U is unitary (U E Zu), Y is triangular 
(Yii = 0 for i > j), and Yii = 1 (i = 1, ... , N). 
The set of the matrices with these two properties 

i>i ii, i 

dp.o(Y) = II (y- l dY)ii(y-l dY)i~' 
i<i 

dp.o(V) = II (2V~~ dV,,), 

(1.14) 

(1.15) 

are the invariant measures on Zu, 'Y, and '0 respec­
tively. We need the quotient measure on gla', 

II dR;; dRi~ = dp.o(g)ldp.o(a'). (1.16) 
iF; 

a' is the direct product of '0 and the group CUo of 
unitary diagonal matrices, with 

dp.o(a') = dp.o(CUo) dp.o('O). (1.17} 
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We now come back to (1.8). From (1.3) 

Tr StS = Tr AtHAH-1 , (1.18) 

where H should be XtX. But V commutes with A 
and therefore disappears, as expected, which enables 
us to take H = yty. We then get from (1.8), (1.12), 
(1.16) 

J J dJ'o('Uo) 

= J exp [-Tr sts] dJ'Q(U) dJ'o(Y) (1.19) 

or 

J Qu J t = --N exp [-Tr S S] dJ'o(Y), 
(2?r) 

(1.20) 

where (2'nY is the volume of 'Uo and Qu = f dJ'o(U) 
is the volume of Zu. We next perform a last change 
of variables from Y to H. Any n X n upper left 
block Y" of any Y E 'Y has determinant 1. This 
implies that the jacobian of the transformation from 
(dY)i; to (y-IdY)i; is 1. Therefore 

dJ'o(Y) = II dYi; dYi~' (1.21) 
i<j 

H is defined by H = yty or more explicitly 

det H' = 1, it follows that Hr;/ = A~~, where 
A~~ is the minor (a, (3) of H'. Similarly Hi~ = AH , 

where Ai; is the minor (ij) of H. Now let 

CP .. = Tr s,ts' = Tr A,tH , A'H,-l 

(1.24) 

We separate the last row and column; let e = (ei), 
i = 1, ... , n - 1, where ei = H~". Then 

CP .. = Iz .. 1
2 H~" - z" L eiz~etAik - z': L e1z;ekAkf 

".k i ,k 

+ L Hi;Z~z;(H~ .. Ai; - e~ekA~D, (1.25) 
i. i ,k,l 

where A~: is the minor of H obtained by removing 
the rows i, k and the columns j, l. From det H' = 
det H = 1, we get 

H~ .. = 1 + L e~ekAkl' (1.26) 
k.1 

SUbstituting in (1.26) and using the elementary 
identity 

we get, after straightforward algebra, 

CP .. = Iz .. 1
2 + CP .. -l 

k<i. iHii = Vi; + L Yk~ Yk ; for i < j, + (e*1 H-1(A t - z':)H(A - z .. )H-1 Ie), (1.28) 

(1.22) where 
Hi; = Yi~ + L Yk~Yk; for i> j. 

k<1 

Each n X n upper left block H" of H can be defined 
by H .. = Y:Y ... Therefore det Y .. = 1 determines the 
diagonal elements of H .. by the condition det H" = 1. 
Each diagonal element of H is then defined (by 
induction) as a polynomial with integer coefficients 
in the nondiagonal elements. 

It follows immediately from (1.22) that the cor­
respondence Y --? H is one to one and that 

dJ'o(Y) = II dH;; dHi~ = II dH;;. (1.23) 
i<1 iFf 

We now perform the integration over H in N steps; 
each one consists of integrating over the variables 
of the last row and column of H, and brings back 
to the original problem for matrices of order smaller 
by one unit, obtained from the original ones by 
removing the last row and column. The proof rests 
on a recursion formula which we now derive: 

Let H', A', etc. be the relevant matrices of order 
n; H, A the matrices of order n - 1, more precisely 
the (n - 1) X (n - 1) upper left blocks of H', A'. 
Greek (Latin) indices run from 1 to n (n - 1). From 

(e*1 B Ie) = L e~Blkek' (1.29) 
k,l 

We now substitute (1.28) for n = N into (1.20) 
and get 

J = Q
u N J exp [-IZNI 2 

- CPN-l] 
(211") 

J 
N-l 

X II dHi; dHi~ II de. de~ 
i<iSN-l i-I 

X exp [-(e*1 H-1(A t -z~)H(A -zN)H-1 Ie)]. (1.30) 

The last integration is straightforward and gives 

(211"t-{~ IZi - zN12Jl. 
The same procedure can be repeated N times and 
gives 

J = Qu(211"t(N-3}/2[II IZi - z;12r 1 

i<i 

Qu is easily computed.' With the normalization 
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(1.13), we get 

Ou = (211"t(N+1)/2/1!2! •.. (N - I)!. 

(1.31), (1.32), and (1.7) then give 

(211")N(N-l) 2 

PN(ZI, ... , ZN) = 1!2! ... N! g Iz; - Zjl 

X exp [- L Iz.l1. 
P N is normalized according to 

J PN(ZI, ..• ,ZN) If dz, dz~ 

(1.32) 

(1.33) 

= J dp.(S) = (211"t', (1.34) 

which follows from (0.1) and (1.2) by direct computa­
tion. This suggests to define 

PN(ZI, ... ,ZN) = [1!2! ". N!(211"n-1 II Iz. - Z;!2 
1,<; 

X exp [ - Liz. 12] (1.35) 

with the normalization 

Choose a set of N - n exponents (pD, i.e., N - n 
integers between 0 and N - 1, which are to be 
distributed among the integration variables 
Z,,+h ••• , ZN' 

Distribute them among these variables, which 
gives a factor (N - n)! and cancels the corresponding 
factor in (1.37). 

Integrate over the N - n angles (J, (i = n + 1, 
•.. ,N), which gives a factor (211")N-". 

Integrate over the N - n variables Iz,l = r" 
which gives one factor p~! for each p~ and cancels 
the corresponding factor in P N. 

Distribute the remaining set of exponents (p,) 
[i.e., the n integers between 0 and N - 1 not taken 
as (p~)] among Zh ••• , z" and z~, ... , Z'! separately. 

Sum over all possible such distributions, after 
multiplying by the two sign factors which come 
from the expansion of the original determinants. 

Sum over all possible partitions of (0, ... , N - 1) 
into the two families (Pi) and (pD. 

Note that N! in the definition of PN cancels liN! 
in the definition of PN. We then get 

(1.36) PN(ZI,' .. ,z,,) 

We next determine the n-eigenvalue correlation 
functions which are defined (Ref. 4) by 

N! Jp lIN 
= (N _ n)'. N(ZI, •.. ,ZN) dz. dz~, 

i-n+l 
(1.37) 

and normalized according to 

(1.38) 

Now 

II (z. - Zj) = det (Z~-I) 
i<i 

1 [.. 2J = (211")" exp - f.; Iz.1 det (D;;), (1.40) 

where 

N-l (z.z"'Y 
D·· = L -'-'- (i j = 1 ... n) " ,,-0 p! ' , ,. (1.41) 

When N ~ (0, the correlation functions tend to 
well-defined limits 

1 
P(Zl, ..• ,z,,) = (211")" 

X exp [ - ~ Iz.1 2
] det [exp (z.z~)]. (1.42) 

_ "( )IIZP.-l ZPN-l -L..J- I ···N 
II 

(1.39) We now consider in some detail the eigenvalue 
density in the complex plane 

wherell is the permutation (1,···, N) ~ (Ph···, PN). 
Each term of the expansion of the right-hand side 
is multiplied, in PN , by a similar term in z*, and 
integrated over N - n variables z, = r,e's, in 
PN(ZI, •.• , z"). The angular integration gives zero 
except if every z, over which one integrates occurs 
with the same power p~ as the complex conjugate 
z~. The subsequent integration on r, then gives 

LD d(r2)(r~)"" exp (-r~) = p~!. 

From this remark and from (1.35), (1.37), PN(ZI, 
••• , ZN) is obtained as follows: 

1 N-l IzI2P 
PN(Z) = - exp [-lzI2] L ,. (1.43) 

211" 2>-0 p. 

Its limit for N ~ (0 is a constant: p(z) = P = 1/211". 
PN(Z) is normalized according to J PN(Z) dz dz* = N. 
One verifies directly that each term in the last sum 
in (1.43) contributes 1 to this integral. PN(Z) is 
invariant by rotation around the origin, as was 
obvious from the symmetry of the problem. Let 
r = Izi. The last sum in (1.43) is the beginning 
of the expansion of exp r2 in powers of r2. Therefore, 
for r2 « N, PN(Z) ~ P and for r2 » N, PN(Z) ~ o. 
More precisely, elementary bounds on the expo-



                                                                                                                                    

444 JEAN GINIBRE 

nential series give 

r2N N 
27rPN(Z) :::; exp (_1'2) N' "2--'--­

.r + 1 - N 

for r2;::: N. 

(1.44) 

(1.45) 

For r = Nt ± u, ° :::; u :$ 1 « N, the leading 
term in the right-hand side of (1.44) and (1.45) is 
exp (-2u2 )/2u(27r)t. This gives a sharp fall of PN(Z) 
from P to ° when r varies in an interval of order 1 
around Nt. As a consequence, the number of eigen­
values in the "tail" of the distribution, defined as 

oN = f PN(Z) dz dz* (1.46) 
Izl>NI 

is proportional to Nt. More precisely oN ~ (N/27r)i 
for N » 1. 

Electrostatic Analogy 

The electrostatic model introduced by Wigner8 

and Dyson 4 can be extended to the present case. 
Consider N unit charges in a two-dimensional space 
which is taken as the complex plane of the variable z: 
The positions of the charges are Zh ..• , ZN. Suppose 
that the charges move in an harmonic oscillator 
potential ! IzI2 centered at the origin. Then the 
potential energy of the system is 

U(ZI' ... ,ZN) = - L: log Iz. - z;1 
i<i 

(1.47) 

The probability distribution of the positions 
Zh ••• , ZN when this Coulomb gas is in thermo­
dynamical equilibrium at the temperature T is 
proportional to exp [-,BU(Zl' ... , ZN)] (where 
,B = l/kT). For,B = 2 this is proportional to P N • 

Therefore the distribution of eigenvalues of a 
random matrix S E Zc is identical with the dis­
tribution of the positions of charges of a two-dimen­
sional Coulomb gas in an harmonic oscillator 
potential, at a temperature corresponding to ,B = 2. 

2. QUATERNION MATRICES 

Z is now the algebra ZQ of N X N Q matrices, 
i.e., matrices with coefficients in the quaternion 
field Q. Q can be represented as a two-dimensional 

8 E. P. Wigner, Proc. 4th Can. Math. Cong., Toronto, 
1959, p. 174. 

complex vector space.9 This representation associates 
to any N X N Q matrix a 2N X 2N complex matrix. 
The image of matrices in ZQ are characterized by 

tT = T*t, (2.1) 

where * means complex conjugate and t is a direct 
sum of N 2 X 2 blocks of the form (~-~). (These 
matrices are quaternion real in Dyson's notations. 4

) 

The group Zu of unitary matrices in Z is charac­
terized by (2.1) and TtT = 1, and satisfies therefore 
also TT tT = t, where T means transposed. Zu is 
the symptectic group Sp(N). Let S E ZQ. We first 
look for eigenvalues of S in Q, i.e., for A E Q and 
vectors v E QN such that Sv = VA. (The product 
of a vector E QN by a scalar A is the product by A 
on the right. g) Now, 

Lemma: If A E Q is an eigenvalue of S then 
p. -lAP. is also an eigenvalue of S for any p.' ~ 0, 
p. E Q. In fact, 

Sv = VA implies S(vp.) = VP.(P.-lAP.). (2.2) 

Therefore the eigenvalues of S in Q constitute 
orbits, each of which is the set of quaternions 
obtained from one A E Q by the internal auto­
morphisms A ---+ P.-lAP. (which are simply three­
dimensional rotations of the imaginary part). 
Consider now a subspace of Q isomorphic to C. 
This subspace intersects every orbit in two points 
which are complex conjugate in C (this means 
simply that in the three-dimensional space of purely 
imaginary quaterernions, we consider the intersec­
tion of.a sphere with one of its diameters), and these 
two pomts determine the orbit completely. Therefore 
all possible information on the eigenvalues of a 
Q matrix in Q can be obtained from the eigenvalues 
in a subspace C of Q. 

From now on we use only the 2N X 2N complex 
representation of the matrices of ZQ, and study their 
(complex) eigenvalues in the ordinary sense. One 
verifies directly the above mentioned result, namely 
that due to (2.1), the eigenvalues of any S E ZQ 
are 2 X 2 complex conjugate. For if Sv = zv Z E C 

2N ' , 
v E C , then tSv = tzv, or S(tv*) = z*(tv*). 
Moreover, the eigenvector associated with Z* can 
be taken to be tv*. We shall need the following 

Lemma: If S E ZQ, and if all eigenvalues of S 
are distinct, then S = XAX- l where X A E Z , , Q, 

and A is diagonal. 

In fact, S can be diagonalized as a complex 
matrix. One can take A as a direct sum of 2 X 2 

.9 C. Chevalley, Lie Groups (Princeton University Press 
Prmceton, New Jersey, 1946). ' 
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blocks 

(i = 1, ... ,N). 

Therefore A E ZQ. The column vectors of X are 
the eigenvectors xa of S. One can take X 2 

.. = 
t(x*)2n-l (n = 1, ... , N), which is equivalent 
to X E ZQ. 

We now define measures on ZQ. The linear 
measure is 

dJ.l.L(S) = II dSij' (2.3) 
'.f 

[Note that because of (2.1), the factors m (2.3) 
are 2 X 2 complex conjugate.] 

C t 

dp.(S) = dP.L(S) exp [-! Tr S SJ. (2.4) 

The coefficient ! is intended to achieve greater 
similarity with the previous case and to compensate 
for the artificial doubling of the dimension of the 
matrices. 

PN is defined by (1.2). The first step in its calcula­
tion is the same as previously and leads to 

N 

dP.L(S) = II Iz; - zW II Iz; - z; I' Iz, - zW 
i-I i<i 

N 

X II dz; dz~ II dRij 
,-1 iFi 

with dR = X-ldX, and therefore to 

PN(Zl, ... ,ZN) = (N~2N) IT Iz; - z~12 
X II Iz. - z;!' Iz, - zWJ, 

i<i 

where now 

(2.5) 

(2.6) 

(2.7) 

The factor 2N in (2.6) comes from the exchanges 
z, ~ z~. dJ.l.o(X) = II;,; dR;; is the invariant 
measure on the group 9 of regular elements in ZQ 
and II.",; dR.; is the quotient measure on 9/a' 
where a' is the commutator of A in ZQ. Any X E 9 
can be decomposed as previously as a product 
X = UYV where U is unitary, Y is triangular 
(Yij = 0 for i > j) and satisfies Y .. = 1, and V is 
diagonal with real positive elements. Moreover, it 
follows from tX = X*t that 

(2.8) 

is unitary and antisymmetric (right-hand side), and 
has nonzero elements only in 2 X 2 blocks along 

the diagonal (comparison of both sides). From this 
and the condition V" > 0, it follows easily that 
B = r. Therefore U E Zu(CZQ ). It then follows 
that Yand V belong to ZQ. In particular, 

and 

Y 2i •2 .-1 = Y 2 .-l •2i = 0 (i = 1, '" ,N). 

The same argument as previously then leads to 

J = (2~)N J exp [ -~ Tr stsJ dJ.l.o(Y), (2.9) 

where D s is the volume of the symplectic group and 
is defined by 

Ds = lu dp.o(U) = J J}; (iUTt dU);; (2.10) 

and 

(2.11) 

where the product extends over the elements 
i < j, (i, j) ~ (2k - 1, 2k) for k = 1, ... , N. We 
next change the integration variables from Y to 
H = yty. Then 

(2.12) 

where II has the same meaning as in (2.11). We 
integrate over H in N steps as previously. We first 
derive a recursion formula analogous to (1.28). 
H', A', etc. now denote matrices of order 2n, tJ.' are 
the minors of H'. H, A are the 2(n - 1) X 2(n - 1) 
upper left blocks of H', A'. tJ. are the minors of H. 
From H' E ZQ and H' = Y'tY', it follows that 
the 2 X 2 diagonal blocks of H' have the form 

[
hi 0]. 
o hi 

In particular, 

H~n-l.2"-1 = H~n.2n = hn • 

Let 

e = (ei), e' = (eD [i = 1, .,. 2(n - 1)J 

where ei = H:. 2n- l and e: = H:. 2n• Then 

e' = te*. (2.13) 

The diagonal elements of H' are defined by the 
condition that all upper left blocks of H' have 
determinant one. In particular, 

h" = 1 + .L: e~e.tJ.ii' (2.14) 
i.f 

h" = 1 + .L: er'e~(h .. dkl - .L: e~eid::). (2.15) 
le.' i, i 
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(2.14) defines h .. and (2.14), (2.15) give an identity 
between e, e', and ..i. 

n. is easily computed.4 With the normalization 
(2.10), we get 

ns = (271't(N+l)/I!3! ... (2N - I)!. 

(2.16) (2.6), (2.24), and (2.25) give 

(2.25) 

Now from (2.13) and H- l E ZQ, it follows easily that 

(e*'1 H-l Ie') = (e*1 H-l Ie), (2.17) 

(e*'1 H- l Ie) = -«e*1 H-l le'»*. (2.18) 

The notation is that of (1.29). From (2.17), (2.18), 
and Hi! = ..iii' it follows that both sides of (2.16) 
are zero, and (2.16) reduces to 

(e*' I y-l Ie) = (e* I y-l Ie') = O. (2.19) 

Let now 
cf>" = Tr A,tH , A'H,-I. 

We separate the last two rows and columns of the 
various matrices by applying (1.28) twice. 

cf> .. = cf>,,-1 + 2 Iz,,1 2 

+ (e*1 U Ie) + (e*'1 V Ie'), (2.20) 
where 

and 

Vjk = L: [/z .. 12 
- z"z; - z!z~*J[h .. dkZ - e~eid~!J 

- (di;h .. - d~;e1e.)dkZ] 

PN(Zl, ... ,ZN) = [(271')N(2N-l) /zNN!l! ... (2N -I)!] 

X exp [-t /Z./2] 

N 

X II /z. - zW II /z. - Z;12 /z. - zW. (2.26) 
i-1 i<i$.N 

P N is normalized according to 

J PN(Zl, .,. ,ZN) II dZi dz~ = (271')2N', (2.27) 

which follows from (2.4) and (1.2) by direct computa­
tion. By analogy with (1.35), we define 

PN(ZI, •.. ,ZN) = [(47I'tN!l!3! ..• (2N - 1)!r1 

X exp [ - t Iz.1 2
] 

N 

X II /z. - Z~/2 II Iz. - Z;/2 IZi - zW, (2.28) 
i-l i<i5N 

which is normalized according to (1.36). 
The determination of the correlation functions 

appears to be considerably more difficult than in 
the complex case, and the electrostatic interpretation 
of P N breaks down. 

3. REAL MATRICES 

+ (z:*z" + z!zDe~ei(d~} - dijdkZ ) 

(summation over all indices e, I, i, j). 

(2.22) Z is now the algebra of real N X N matrices 

In (2.22) some terms have cancelled out because 
of (2.16), (2.19), and the z: [i = 1, ... , 2(n - 1)] 
are the (Zl' zt Z2, z~, ... , Zn_l, Z:_l) in that order. 
We next substitute (2.14) into (2.22). After some 
straightforward algebra involving repeated use of 
(2.13), (2.17), (2.19), (1.27) and its analogue for 

the terms of fourth order in e, e' cancel out and 
we get 

cf> .. = cf> .. -1 + 2 Iz .. /2 + 2(e*/ U Ie). (2.23) 

The integration over e runs exactly as in the complex 
case and gives after N successive steps 

J = ns(271't(N-2)[ II IZi - Z;12 /z. - zWr 1 

i<isN 

X exp [ - ~ Iz./ 2 J. (2.24) 

8 = (8;;). The linear measure is 

dJ.l.L(S) = II d8;;. (3.1) 
".i 

The eigenvalues of S now consist of v complex­
conjugate pairs (0 :::::; 2v :::::; N) and q = N - 2v 
real numbers: Zu = Z~;-l for i = 1, .. , , v and 
z. real for i > 2v. 

We define P;'(Zl1 •.. , ZN) by 

f dp,(S) = PlXZl, ... ,ZN) ITldz. (3.2) 
i-I 

where f has the same meaning as in (1.2). 
Any S with distinct eigenvalues can be diag­

onalized: S = XAX- 1
• A is diagonal with Ail = Z •• 

X is regular. Its first 2v column vectors X" are 
2 X 2 complex conjugate and the last q are real: 

X 2
; = (X2 ;-I)* for 1:::::; j :::::; v 

and 

(3.3) 
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X is defined modulo multiplication on the right by 
any element of the group OW of diagonal matrices 
W which satisfy: 

W 2 ; .2; = W:;-1.2;-1 for 1 ~ j ~ v 

~nd 

W;; = W;~ for j > 2v. 

The correspondence S ~ (A, X mod OW) is 1 ~ 
v!(N - 211) !2'. From (1.4) we get 

dJl.L(S) = II dz; II [dR, A];;, (3.4) 
i i~i 

where dR = X-ldX or 

dJl.L(S) = II dz; II Iz; - Z;12 II dR;;. (3.5) 
i i<i i;pt.; 

Therefore 

P;(Zl' ... , ZN) = [II!(N - 2v)!2Tl II Iz; - z;I'J, 
i<i 

(3.6) 

where 

V2i ,2i = V2i-1,2i-l for 1 ~ j ~ v, 

Vii> 0 for 1 ~ j ~ N. 

Furthermore, 

(3.1) 

where 

• 
dJl.o(Uo) = II dO;, (3.12) 

i-I 

• N 

dJl.o(V) = II 2V;/,2i dV2i ,2i II Vi~ dVii (3.13) 
i-I j-2p+l 

are the invariant measures on 'Uo and '0. 
Note also that the sum over the ± 1 of the N - 2v 

last diagonal elements of 'Uo will result in a factor 
2N

-
2

• in the volume of this group. 
We next introduce a representation where only 

real matrices appear. Let ~ be the unitary matrix 

. 1 (1 i) 
~ = ~ V2 1 -i EB I N -2> 

(3.14) 

J = J 1J dR;; exp [-Tr Sf 8]. 
where EB means direct sum. Then X' = X~ is real. 

(3.7) Furthermore 
<r' 

We define a measure on the set OC of the X which 
satisfy (3.3) by 

dJl.o(X) = II dR;i; (3.8) 
i. i 

OC is not a group. However the relation: Xl ~ X 2 

iff X~lX2 E OW is an equivalence relation in OC. 
We pick one element X 0 in each class. Then any 
X E OC can be written as X = X 0 W in one and only 
one way. Then 

dR = X-I dX = W- l dW + W-lX~l dXo W (3.9) 

implies 

dJl.o(X') = II (X,-l dX');; = dJl.o(X). (3.15) 
i.; 

X' can be written in one and only one way as 
X' = OYV' where 0, Y, V' are real, 0 is orthogonal 
(proper or not), Y is triangular (i.e., Y;; = 0 for 
i > j) with Y .. = 1, and V' is real> 0 and diagonal. 
Then it follows from 

X,-l dX' = V,-l dV' + V,-l y- l dY V' 

+ V,-l y-1(0-1 dO) YV' 

and from (3.15) that 

dJl.o(X) = dJl.o(O) dJl.o(Y) dJl.o(V') 

(3.16) 

(3.17) 

dJl.o(X) = dJl.o(W) II dR. i , (3.10) where 
i~i 

where 
N 

dJl.o(W) = II (W-1 dW);; 
i-I 

is the invariant measure on OW. OW is the direct 
product of the subgroup 'Uo C OW of matrices U 0 

which satisfy 

(UO)2;-I,2i-l = (UO)ti ,2; = ei8
; for 1 ~ j ~ v 

and 

(UO)i; = ±1 for j > 2v 

and the subgroup '0 of real positive matrices V E OW: 

dJl.o(O) = II (0-1 dO);;, 
i<i 

dJl.o(Y) = II (y-1 dY)i; = II dY;;, 
i<i i<i 

dJl.o(V') = II V~~1 dV~;. 
• 

(3.18) 

(3.19) 

(3.20) 

V' can be decomposed in one and only one way as 
V' = VT where V E '0 and 

· (t. 0) 
T = ~ 0 lit; EB I N - 2 • 

(3.21) 

with 

(3.22) 
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where d}lo(V) is defined in (3.13) and 
, 

d}lo(T) = II dt;/ t j. 
i-I 

We now come back to (3.7). Now Tr sts = Tr 
AtHAH-t, where H should be XtX = ~x'tx'e. 
However, due to X' = OYVT and the fact that V 
commutes with both ~ and A, one can take H = 
~H'~t, where 

(3.23) 

depends only on Yand T. We now introduce in 
(3.7) an extra integration over 'lio and make use 
of (3.10), (3.11), (3.17), and (3.22). We obtain 

J = go 
(27rY2N- 2, 

X J exp [-Tr sts] d}lo(Y) d}lo(T), (3.24) 

where go is the volume of the full orthogonal group 
and (27rY2N- 2, is the volume of 'lio. Now it follows 
from (3.23) that 

d}lo(Y) = II dY;j = II d(ytY),j = II dH: j, (3.25) 
i<i i<i i<i 

the Jacobian of the last transformation being 
(det T)2.-1 = 1. Finally, 

J = go 
(27rY2N- 2• 

X J exp [-Tr sts] g dm j t1 dtj/t j. (3.26) 

It follows from (3.23) that the 2j - 1 X 2j - 1 
(or 2j X 2j) upper left blocks of H' have de­
terminant t~ (or 1) for j = 1, ... , II and that the 
j X j upper left blocks have determinant 1 for 
j ;::: 211. Independent variables are therefore the H: j 

with i < j, or i = j = 2k - 1 for k = 1, ... , II. 

The other diagonal elements of H' are determined 
in term of them by the previous condition. 

We now come back to the original complex rep­
resentation and express the differential element in 
(3.26) in terms of H alone. One can replace II dH~j 
by the corresponding II dH;; except perhaps for 
the first 2 X 2 blocks along the diagonal. 

If (~ ~) is the jth such block in H', the correspond­
ing block in H is G. ~), where u = !(a + e), r = 
!(a - e) + ib. From (3.23) it follows that a = t~a' 
and e = ti2e', where a', e' depend only on Y, as 
well as b. In particular, for fixed Y: 

2 dt j = da = _ de = d(a - e). 
tj a e a + c 

The contribution of this 2 X 2 block to the dif­
ferential element in (3.26) is then easily seen to be 
db dtj/t j = dr dr*/4u. Therefore 

J go J t = 2N (27r r exp [ - Tr S S] d}l(H) , (3.27) 

where 

d}l(H) = II dH'i tr (H2i.2Irl dH2i.2j-l- (3.28) 
i<i i:01 

We can now integrate over the last N - 211 rows 
and columns of H by the same induction procedure 
as in Sec. 1. We use (1.28) for n = N (z" real). 
The integration over the last row and column is 
then straightforward and gives a factor 

exp [-lzNI 2]7r(N-o/2[II IZN - Z, IJ- 1
• 

i<N 

After N - 211 similar steps, we obtain 
g (N-2.) (N+2.-1)/4 

J = --"-07r ____ _ 
2N(27rY 

X [ II Iz, - zjl II IZI - ZjIJ-1 
2p<i<i-5:N l:5;2p<i 

where F,(Zl, ... , Z2.) is the value of the integral 
f exp [-Tr stS] d}l(H) when S is a 211 X 211 matrix 
without real eigenvalues for II > 0, and F 0 = 1. 
Substituting (3.29) into (3.6), we obtain 

g (N-2.) (N+2.-l)/4 
P;(ZI •.. ZN) = 07r II Iz - Z I 

, , III(N - 211)1(47rY2N '<I' i 

X exp [- L: Iz,12] II Iz; - zll F.(ZI' ... ,Zh). 
i>2" i<i::f2p 

(3.30) 

In particular, for II = 0, all the eigenvalues are 
real: Z; = r; (i = 1, ... , N), 

X exp [- f r~J. (3.31) .-1 
For II ~ 0, F. cannot be calculated by the previous 
method. One can obtain a recursion formula anal­
ogous to (1.28), though somewhat less simple. How­
ever, the integration over the last two rows and 
columns of H does not lead to elementary functions 
as previously and the induction procedure breaks 
down completely. 

Therefore we are able to determine PN explicitly 
only in the particular case where all eigenvalues 
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are real. In the general case, we have extracted 
the dependence of P N on the real eigenvalues, and 
the complex eigenvalues still appear in a factor F. 
for which we have only an intractable integral 
representation. 

CONCLUSION 

The results of our investigation are essentially 
contained in Eqs. (1.35), (1.40), and (1.42) for the 
complex case; (2.27) for the quaternion case; (3.30) 
for the real case. They are remarkably simple in 
the complex case, where, in particular, the eigenvalue 
density tends to a constant PN(Z) ---? P = 1/271" as 
N ---? <Xl. The quaternion case involves essentially 
technical problems. In the real case, however, one 
meets major difficulties which seem to come from 
the fact that the real field is not algebraically closed. 
We have considered here only a restricted class of 
ensembles. One could generalize by keeping the 
same algebraic set of matrices and defining other 
measures dJ.l.' instead of dJ.l. defined in (0.1). For 
instance, if dJ.l.'(S) = <9 (S)dJ.l.(S), where <9 is a 

polynomial in Tr (S') (r = 1, , N) (if r' > N, 
Tr S" is a polynomial in Tr S', r ::; N), then nothing 
is changed in the calculation of P N , because <9(S) 
depends only on A. However the induction procedure 
by which we performed the integration on X (or H) 
seems to be a very specific property of exp [ - Tr St SJ. 

One could also consider other algebraic sets of 
matrices, for instance Dyson's V ensembles (5) with 
measures analogous to (0.1). Nothing new appears 
in the complex case where V is identical with Z. 
In the real case, V is the set of complex symmetric 
matrices; the calculation of PN seems to be extremely 
complicated, and the simplest case of 2 X 2 matrices 
is not encouraging. In the quaternion case, we have 
not reached any conclusion. 
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Self-Consistent Approximations in Many-Body Systems* 
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Baym's definition of a self-consistent approximation is rephrased in a more diagrammatic way and 
compared with formulations of the exact many-body problem of Balian, Bloch, and DeDominicis. 
It is shown that many of the results of these authors are valid for any self-consistent approximation 
as defined by Baym. 

I. INTRODUCTION 

A SIGNIFICANT contribution to the theory of 
approximations was made by Baym1 who suc­

ceeded in defining, within the language of thermal 
Green's functions,2 what he termed a self-consistent 
approximation (henceforth SCA). Essentially, a SCA 
is one wherein the (approximate) Gibbs potential 
is stationary with respect to variation of the (approx­
imate) Green's function. Baym showed1 that a SCA, 
i.e., one which satisfies his criterion, possess some 
interesting properties in the equilibrium case: (i) 
Various common ways to evaluate the partition 
function from the one particle Green's function all 
lead to a self-consistent, i.e., the same, result. (ii) In 
the zero temperature limit a SCA maintains the 
Hugenholtz-Van Hove theorem. In this note Baym's 
definition for a SCA is rephrased in a more diagram­
matic way (Sec. II). In this way it is shown that 
the basic expressions that were established, a la tour 
de lorce, by the group in Saclaya are valid for a SCA. 
Some of these consequences are listed in Sec. III. 

II. DIAGRAMMATIC MEANING OF BAYM'S 
CRITERION 

The Gibbs potential, A, is defined through the 
grand partition function, ZG, by 

ZG = exp (-,8A). 

The exact A can be expanded into infinite number 

* This research was supported in part by the U. S. Army 
Research Office (Durham) under Grant No. DA-ARO(D)-
31-124-G340. 

t Present address: Department of Physics, Technion­
Israel Institute of Technology, Haifa, Israel. 

1 G. Baym, Phys. Rev. 127, 4, 1391 (1962). 
2 L. P. Kadanoff and G. Baym, Quantum Statistical 

Mechanics (W. A. Benjamin, Inc., New York, 1962). 
3 There are a number of publications by Balian, Bloch, 

and De Dominicis on this subject. In particular we used 
explicitly the following: R. Balian, C. Bloch, and C. De 
Dominicis, Nucl. Phys. 25, 529, (1961), and their articles in: 
Lectures on the Many BodJJ Problem, edited by E. R. Caianiello 
(Academic Press Inc., New York and London, 1962). These 
authors are referred to in the text by BBDD. 

of terms representable by connected diagrams: 

Ao is the Gibbs potential with no interaction. The 
rules for evaluating the diagrams are given, for 
example in Ref. 4. As an example of these rules 
the contribution of the diagram in Fig. 1 to A - A 0 is: 

L: r G~(Pl' U2 - Ul)G~(P2' Ua - U2) 
PtPSlPa J P>U.>Ua>U1>O 
lha.a, 

X G~(q2' U2 - Ua)G~(ql' U1 - U2) 

X G~(Pa, Ua - Ul)G~(qa, Ul - ua) 

X (PIPa! V !qaql)(P2ql! v !Q2Pl)(Q2Qa! V !PaP2)' 

Note that a directed line from U to u' going up 
(down) represents G~(p, U - u')[G~(p, U - u')] 
where G~< are the free-particle propagators2: 

G~(p, U - u') = I; exp [Ep(U - u')], 

G~(p, U - u') = -I: exp [Ep(U - u')], 

with I~ = 1 - t: = {exp [,8(Ep - J.L)] + l}-l. All 
the notation and symbols are standard (cf. Ref. 2). 

It is well knowna
.
5

•
6 that the exact A - Ao can 

be expressed as a functional of the exact Green's 
function G only (apart from a trivial dependence 
on ,8) 

G = Go + Go2:[G]G, 

2: being the exact (proper) self-energy. A diagram­
matic derivation of this is given by Bloch.6 Baym's 

4 A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinski, 
Methods of Quantum Field Theory in Statistical Physic8, 
(translated by R. A. Silverman) (Prentice-Hall, Inc., Engle­
wood Cliffs, New Jersey, 1963). 

6 J. M. Luttinger and J. C. Ward, Phys. Rev. 118,5, 1417 
(1960). 

6 C. Bloch, Physica 26, 62 (1960). 
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definition of a SCA is: A SCA is one in which the 
approximate Gibbs potential (A - AO)A can be 
expressed as a functional of an approximate Green's 
function, G A 

the functional being the same as for the correspond­
ing exact case. To see the diagrammatic meaning 
of this we first construct a functional of Go through 
the following self-evident lemma, where Go is given by 

G ( ') _ {G~(U' u') for u > U'i oU,u -
G~(u, u') for u < u'. 

Lemma: A necessary and sufficient condition for 
a set of skeleton diagrams (Le., diagrams represent­
ing A - Ao with no self-energy insertions) to be 
a functional of Go only, rather than of G~ and G~, 
is: Each diagram in the set must appear with all 
others (when distinct) obtainable from it by placing 
the interaction in all relative positions. 

A set of diagrams with this property will be 
referred to as t equivalent. For example the totality 
of t-equivalent family associated with the diagram 
of Fig. 1 is given in Fig. 2. 

Remark: If the replacement of G~< by Go and 
integrating over the whole range 0 to {3 implies the 
repetition of a given skeleton diagram n times, then 
each member of its t-equivalent family will be re­
peated n times upon making the corresponding 
replacement. 

The point of all the above is that if we, in an 
approximation for A - Ao, wish to keep a certain 
skeleton diagram, we must retain all its t equivalents 
as well. The reason being that only the whole set 
can be expressed in terms of Go only. This is done 
by multiplying each diagram of the mth order in 
the interaction by 11m!, [The name "t equivalent" 
stands for "topologically equivalent" diagrams. In 
Ref. 4, (p. 131), a more restricted meaning is asso­
ciated with a t-equivalent family. Here, however, 
we need not concern ourselves with the possibility 
of repeated diagrams since each diagram is con­
sidered separately and hence we have the factor 
1/ml for a diagram of the mth order in the potential. 

P20~~---D:: FIG. 1. Diagram referred to in the 
PI _~ __ -": Q3

U1 
text. 

(al 

,I\--~~D 
}!:-~--

(d) 

(b) (e) 

8----0 PI 
- P, 

P2 
-----

(e) 

FIG. 2. Diagrams which form a complete t-equivalent 
family with Fig. 1. 

It is convenient to consider together the t-equivalent 
diagrams in the sense of Ref. 4. In this case, for 
example, the totals t-equivalent family of Fig. 1 is 
representable by Fig. 2(a), (b), and (c). The cor­
recting factor now becomes (m - 1) !1m! = 11m. 
Further simplification is possible by considering 
together terms in ~A (1, 1') which differ only by 
the sense of the arrows of the lines attached to the 
points 1 and I'. (Remarks pertaining to Hartree­
Fock-like terms are omitted here.) For example, 
Fig. 3 should be considered together with a similar 
diagram where the line on the top left-hand corner 
goes up instead of down. With such simplifications 
the correcting factor becomes 112m; these are im­
plicit in Baym's formalism], replacing all G~< by Go 
and integrating over the whole range. The approx­
imate self-energy, ~A' is dictated by the skeleton 
diagrams retained in the approximation. For example 
the diagram of Fig. (1) leads to the terms in ~A 
which are given in Fig. 3. The prescription for 
evaluating the diagrams for ~ are given, for example, 
in Ref. 4 and will not be repeated here. 

We can now consider composite diagrams, i.e., 
diagrams with self-energy insertions. Here the pre­
scription is: retain all those and only those diagrams 
which are built up of our set ~A' This defines the 
approximate Gibbs potential, (A - AO)A' 

To see that the prescription outlined above is 
equivalent to Baym's definition of SCA we proceed 
as follows. Consider the set of skeleton diagrams 
in SCA for A - Ao. Replace everywhere G~< by 
G~< the resultant functional is Baym's <I>[GA ], i.e., 
it is a "closed" functional with o<l>[GAl/OGA = ~A' 
(Note that, by construction, it is a functional of 
GA and not of G~ and G1 separately.) 

<I>[GA] contains all6 the diagrams of (log Zoh = 
-liMA - AO)Ai however each diagram is repeated 
na times where nB is the number of the proper 
self-energy terms in the diagram. It can be shown6 

that Luttinger and Ward's6 expression for the 
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FIG. 3. One of the self-energy diagrams 
arising from the diagram of Fig. 1. 

logarithm of the partition function [their Eq. (47) 
which is, in Baym's notation, his Eq. (47)J is ob­
tained upon correcting for overcounting of diagrams. 
It then easily6.l follows that the approximate Gibbs 
potential is stationary with respect to variation of 
the approximate Green's function. 

We would like to conclude this section with the 
remark that when the nonequilibrium problem is 
considered Baym's demand that Go(U) be a func­
tional of U rather than Go(U = 0) is a natural 
extension of the discussion of this section. In either 
case one requires the functionals }; and G to depend 
on the full Go of the problem for then, formally, 
}; and G are expressible in a sense as a power series 
in Go (This, of course, holds true only for momentum­
conserving interactions. In general the expression 
depends on the potential.) and will follow the latter 
transformation properties [cf. Baym's Eq. (17)J. 

m. BBDD FORMULATION 

The various remarkable expressions for the Gibbs 
potential that were obtained by BBDD are valid 
also in a SCA. To see this one merely notes that 
BBDD obtained their expression by using the no­
tions of rotated and translated diagrams. A rotated 
diagram is one obtained from a given diagram by 
letting the earliest interaction time become the last. 
For example the diagrams given in Figs. 2(c) and 
2(d) are all the rotated diagrams corresponding to 
Fig. 1. The notion of translated diagrams applies 
only to composite diagrams j it refers to diagrams 
obtained from a given diagram by placing the 
irreducible self-energy parts of a diagram in various 
relative positions. Clearly for skeleton diagrams the 
family of rotated diagrams is included in the family 
of t-equivalent diagrams. In fact it is easy to see 
that in general a SCA contains automatically the 
whole family of rotated and translated diagrams if 
it contains one member thereof. 

Since a SCA contains all the rotated and trans­
lated diagrams, the techniques developed by BBDD 
can be applied to it. It then follows, for example, 
that the time integration can be carried out and 
the various expansions for the Gibbs potential 
obtained by BBDD for the exact problem are valid 
for a SCA. Some of the results of BBDD which 
are valid for any SCA are listed below. (It is, 
perhaps, of interest that items 1 through 3 can be 

formulated under less restrictive conditions then 
SCA requires.) 

(1) The four distinct expansions for the Gibbs 
potential given, e.g., by Balian3 are valid for any 
SCA. 

(2) The Gibbs potential factorizes into terms 
which involve Goldstone-like diagrams, i.e., wherein 
the Green's function lines of a given momenta go 
either up or down. In other words for a SCA the so 
called anomalous diagrams5 can be eliminated. 

(3) Hugenholz-Van Hove theorem is valid for a 
SCA (e.g., the DeDominicis article in Ref. 3.) 

(4) Physical quantities such as average energy, 
particle number, and entropy can be expressed in 
terms of the "true" occupation number N k • Nk being 
given by Nk = GA(kj t, n. 

(5) The Lee-Yang theorem viz: 

oAj oNk = 0, 

is valid for SCA. 
(6) The Landau theory of Fermi liquid is de­

rivable in a SCA. [BBDD do not consider transport 
coefficients in their formulation of Landau's theory. 
What is meant here by Landau's theory is the 
possibility of expressing the Gibbs potential and 
the physical quantities (viz., entropy, energy, number 
of particles, and momenta) in terms of a distribution 
function F k. The latter has the property of becoming 
a step function in the limit of zero temperature. 
The relation between these expressions and Landau's 
theory is discussed in Ref. 2. Note that BBDD 
derivation is complicated by the nonuniqueness of 
F k however their argument as such can be carried 
over for a SCA.J 

IV. REMARKS AND SUMMARY 

The notion of rotated diagrams is associated with 
the trace character of the Gibbs potential. 3 Retention 
of families of rotated diagrams in an approximation 
preserves this property. Retention of translated 
diagrams in effect enables one to consider G(kj u, u') 
as a functional of G(°>Ckj u, u'). 

Baym's condition for a SCA is more demanding 
than an approximation that could be inferred from 
the above. A SCA implies transformation properties 
for the self-energy and the Green's function from 
those obtained for the free-particle Green's function. l 

From the point of view of this note this is traceable 
to the possibility of replacing in an approximation, 
the integrals of Eq. 1 by integrals over the whole 
time range (with a factor lip!, of course). This, in 
turn, comes from the fact that all V(u) in the equa­
tion are the same function. The retention in a SCA of 
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this property is equivalent to satisfying a necessary 
condition for the existence of a model Hamiltonian7 

that will reproduce the approximation; however we 
were unable, so far, to formulate a sufficient condi­
tion for this. 

To summarize: It was argued in this note that 

1 Model Hamiltonians which reproduce the well-known 
approximations were considered by R. H. Kraichnan, J. 
Math. Phys. 3, 3, 475 (1962). 

JOURNAL OF MATHEMATICAL PHYSICS 

the requirement for a SOA implies that BBDD 
formalism can be applied; the connection between 
their approach and Baym's was used to show that 
a SOA possesses a number of remarkable properties. 
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A summary of some recent developments in the theory of invariant imbedding is presented. Appli­
cations to some simple problems in wave propagation, diffusion theory, and transport theory demon­
strate some of the advantages of the new and almost "mechanistic" approach. In addition, a slightly 
different attack is applied to nonlinear difference equations and to the classical phase-shift problem. 

I. INTRODUCTION 

A PREVIOUS review1 of the method of "invar­
iant imbedding" described the subject as it 

existed in 1959. Since then, considerable progress 
has been made in understanding the method and 
in extending its areas of applicability. Some of the 
development (up to 1961) is briefly sketched in the 
last chapter of Wing,2 some has appeared in the 
various journals, and some is as yet unpublished. 
The purpose of this new review of the subject is 
to make some of these developments more readily 
accessible. 

During these past few years the method of in­
variant imbedding (or the method of invariance) 
has progressed from a semi-intuitive particle count­
ing technique to a rather straightforward, almost me­
chanical, analytical device. Indeed it may be thought 
of as simply a perturbation technique wherein it 

'" Present address: Department of Applied Mathematics, 
University of Colorado, Boulder, Colorado. 

t This work was supported by the U. S. Atomic Energy 
Commission. 

1 R. Bellman, R. Kalaba, and G. M. Wing, J. Math. Phys. 
1, 280 (1960). 

2 G. M. Wing, An Introduction to Transport Theory (John 
Wiley & Sons, Inc., New York, 1962). (This book contains 
an extensive bibliography which we shall refrain from re­
ferring to in detail.) 

is the tlsize" of the system that is being perturbed. 
In place of the original problem, we consider a 
family of problems generated by a single parameter, 
the parameter being the "size" of our original 
problem. The family provides a means of advancing 
gradually from the solution for one member, usually 
degenerate, to the solution of the given problem. 
Most generally this Hbridge" between the known 
and the desired solution takes the form of a dif­
ferential or integrodifferential equation. 

To illustrate the more recent invariant imbedding 
techniques we begin in Sec. II with a simple problem 
described by a pair of linear differential equations. 
These may, if one chooses, be thought of as the 
mathematical description of a one-dimensional trans­
port process. From such a point of view the earlier 
"particle counting" technique can be employed, but 
since that method has been thoroughly described 
elsewhere,1.2 we discuss instead several other devices 
which have nothing to do with the "physics" of the 
problem. They enable one to derive the invariant 
imbedding equations directly from the mathematical 
description of the problem by purely mathematical 
analysis. One obvious advantage of such a procedure 
is that the derivation can quite easily be made 
rigorous. 
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In Sec. II we also consider variants of the bound­
ary conditions and briefly extend some of the ideas 
to higher-order systems. 

The techniques of Sec. II are applied in Sec. III 
to several examples from the theory of wave propaga­
tion, diffusion theory, and transport theory. The 
examples show the considerable unification provided 
by the new approaches. 

The final chapter, involving consideration of the 
phase shift problem and of difference equations, 
might have been included as a part of Sec. III. 
However, the approach is slightly different from 
that used earlier. Further, the application to the 
phase shift problem shows clearly how far-reaching 
the imbedding concept really is. 

Since our purpose is to stress the new concepts, 
ideas, and applications, no effort is made towards 
presenting a rigorous development of the material. 
Although occasionally a reference is cited where such 
a development can be found, we give here only 
formal mathematical arguments. 

Finally, we assume that the reader is fairly familiar 
with the contents of Ref. 1. For that reason there 
is no great effort made to describe in detail why one 
seeks certain functions or what the potential ad­
vantages of the invariant imbedding method may be. 

n. MATHEMATICAL DEVELOPMENT 

A. A Simple System of Linear Differential 
Equations 

u(O, x) = 0 implies that no particles enter the 
system at the left end. With this interpretation one 
can use the "particle counting" technique to obtain 
a differential equation for the function R(x) =u(x, x), 
the flux of particles leaving the system at the right 
end ("reflected" flux), and another differential equa­
tion for the function T(x) = v(O, x), the flux leaving 
the system at the left end ("transmitted" flux). 
This method, described in great detail in numerous 
places,1.2 obtains the "invariant imbedding" equa­
tions for R(x) and T(x) by an analysis of the physical 
transport problem itself rather than from the math­
ematical formulation (2.1). 

However there is a considerable advantage in 
beginning with (2.1) since such questions as existence 
and uniqueness can then be dealt with in routine 
mathematical fashion. Bearing in mind the physical 
model that (2.1) represents-namely a rod extending 
from z = 0 to z = x experiencing unit flux input 
at the right end-we consider the material from 
z = 0 to z = x - A as a subrod which experiences 
a flux input at its right end of strength vex - A, x). 
We proceed to relate R(x) and R(x - A). 

Rewrite (2.1) in finite difference form as 

u(z, x) = u(z - A, x) 

+ A[a(z)u(z, x) + b(z)v(z, x)] + O(A), 
(2.3) 

v(z - A, x) = v(z, x) 

+ A[C(Z)U(z, x) + d(z)v(z, x)] + oCA). 

We start by considering the system of differential Putting z = x, and remembering the boundary 
conditions, we get equations 

duCz)/dz = aCz)u(z) + b(z)v(z), 
R(x) = u(x - A, x) 

-dv(z)/dz = c(z)u(z) + d(z)v(z), 0:::; z :::; x, 

u(O) = 0, vex) = 1. 

(2.1) + A[a(x)R(x) + bCx)] + oCA), 

(2.2) vex - A, x) = 1 + A[c(x)R(x) + dCx)] + OCA). 

(2.4) 

If, as sometimes happens, we are not really in­
terested in the functions u(z), v(z) in the interior 
o < z < x but only in their values at the ends, 
namely u(x), v(O), we can employ the ideas of in­
variant imbedding. We begin by considering the 
family of problems generated by the parameter x, 
the "size" of our problem. Denoting the solutions 
to this family of problems by u(z, x), v(z, x) to make 
clear the x dependence, our goal is to find the 
quantities u(x, x) and v(O, x). 

If OI~e regards the system (2.1) as the mathe­
matical formulation of a transport problem in one 
dimension, then u(z, x) is the flux of particles to 
the right at z and v(z, x) is the flux to the left at z 
due to a steady unit input at x. The condition 

Now since the system (2.1) is linear, it follows that 
the flux u(x - A, x) from the subrod due to an 
input at its right end of strength vex - A, x) is equal 
to vex - A, x) times the flux of such a rod due to 
a unit input. Thus, 

u(x - A, x) = vex - A, x)u(x - A, x - A) 

= vex - A, x)R(x - A). 

Putting (2.5) in (2.4) and eliminating vex 
between the two equations gives 

(2.5) 

A, x) 

R(x) = R(x - A) {I + A[c(x)R(x) + d(x)] + O(A)} 

+ A[a(x)R(x) + b(x)] + o(A), (2.6) 

which leads to 
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dR(x)/dx = b(x) 

+ [a(x) + d(x)]R(x) + c(x)R2(x) (2.7) 

upon taking the limit as A ~ O. Evidently the 
boundary condition u(O, x) = 0 implies that 

R(O) = O. (2.8) 

Equation (2.7) gives directly the value of the 
reflected flux from the right end due to a unit input 
without the necessity of finding the fluxes u and v 
in the interior of the rod. Only the integration 
of an initial value problem is required. For further 
discussion, see Refs. 1 and 2. 

A moment's reflection concerning the above der­
ivation of (2.7) shows that the physical model 
served as only a relatively superfluous "crutch." 
This suggests a completely analytical treatment 
based on a perturbation of the parameter x, first 
described in Bellman.3 We do not give the details 
of that method here since it in turn soon led to 
another purely analytical device which is simple, 
easy to apply, and relatively easy to justify mathe­
matically in a wide variety of circumstances. The 
method is illustrated by rederiving (2.7). We proceed 
formally, of course, referring the reader to Bailey4 

for an account of how such matters as existence and 
uniqueness can be dealt with. 

Using subscripts in the customary way to denote 
differentiation we rewrite (2.1) as 

Ui(Z, x) = a(z)u(z, x) + b(z)v(z, x), 

-Vi(Z, x) = c(z)u(z, x) + d(z)v(z, x), 
(2.9) 

u(O, x) = 0, vex, x) = 1. (2.10) 

Since R(x) = u(x, x), it follows by differentiating 
that 

R'(x) = ui(x, x) + U2(X, x). (2.11) 

Now our goal is to express the right side of this 
equation in terms of known functions and, possibly, 
R itself. Evidently this can be done for the first 
term ui(x, x) by using the first of (2.9) evaluated 
at z = x, remembering the boundary condition 
vex, x) = 1. We have, namely, 

ui(x, x) = a(x)R(x) + b(x). (2.12) 

As for the second term on the right side of (2.11), 
we obtain it by noticing that U2, V2 satisfy the same 
differential equations as do u, v but with a slightly 
different boundary condition at x. For if we dif-

a R. Bellman and R. Kalaba, Proc. Nat. Acad. Sci. 47, 
336 (1961). 

'P. Bailey, J. Math. & Anal. Appl. 8, 144 (1964). 

ferentiate (2.9) and (2.10) with respect to x we get 

U21(z, x) = a(z)u2(z, x) + b(Z)v2(Z, x), 

-V2i(Z,X) = c(z)~(z, x) + d(Z)v2(Z, x), 
(2.13) 

(2.14) 

Our problem (2.9) being linear, it follows that U2, V2 

are just mUltiples of u, v. Thus, 

U2(Z, x) = -Vi (x, x)u(z, x), 

V2(Z, x) = -Vi (x, x)v(z, x). 

In particular, 

U2(X, x) = -Vi (x, x)R(x) 

= [c(x)R(x) + d(x)]R(x), 

(2.15) 

(2.16) 

by (2.9). Using (2.12) and (2.16) in (2.11) gives (2.7) 
as before. 

The differential equation for T(x) = v(O, x) can 
be obtained in similar straightforward fashion. Just 
differentiate, 

T'(x) = V2(O, x), (2.17) 

and use (2.15) with z = 0, followed by (2.9) with 
z = x. Thus 

T'(x) = -Vi (x, x)T(x) (2.18) 
= [c(x)R(x) + d(x)]T(x). 

The initial condition for T is 

T(O) = 1. (2.19) 

B. "Input" Prescribed at Both Ends 

Of course there is no compelling reason to restrict 
our attention to the particular boundary conditions 
(2.2). Obviously we could handle in exactly the same 
way the boundary conditions u = 1 at the left end 
and v = 0 at the right. In that case we would use 
x to represent the left end of the interval instead 
of the right, and correspondingly we would obtain 
differential equations for a left-end reflection func­
tion and transmission function. And since the dif­
ferential equations (2.1) are linear, the "output" 
corresponding to an arbitrary "input" u = a at 
the left end and v = b at the right is simply some 
linear combination of the two reflection and two 
transmission functions. We omit the details. 

C. More General Boundary Conditions 

A rather different kind of boundary condition for 
the system (2.1), 

u(O) = 0, u(x) = 1, (2.20) 
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is of considerable interest. The reason for this is 
obvious when (2.1) is rewritten in the form 

d2u(z)/di + A(z) du(z)/dz + B(z)u(z) = O. (2.21) 

Thus we are dealing with a class of problems which 
arises often in practice. And assuming that only 
the values of v at the two ends are of interest, we 
can proceed much as before. 

Denote by u(z, x) and v(z, x) the solutions to (2.1) 
with boundary conditions (2.20). Then manipula­
tions completely analogous to those of Sec. IIA 
shows that 

Sex) = vex, x) 

satisfies the differential equation 

(2.22) 

trouble. Previously our boundary condition at x 
involved a single number (it was taken to be the 
number 1, but obviously any other number different 
from zero would have been just as satisfactory) 
whereas now a whole set of numbers is needed. 
More precisely our present boundary condition in­
volves not just one number but a column matrix, 
namely Yo. 

What we must do is to express the solutions of 
this problem as linear combinations of the solutions 
to n elementary problems, each of which involves 
only one nonzero number in its boundary condition. 
Thus if Ui, Vi are the solutions to (2.25) which 
satisfy the boundary conditions 

(2.27) 
- S'(x) = c(x) + [a (x) + d(x)]S(x) 

+ b(X)S2(X). 
where Ii is a column matrix whose jth element is 1 

(2.23) and all other elements are zero, then 

Determining the correct initial condition for S 
presents only a slight difficulty which is soon re­
solved. In view of the boundary conditions (2.20) 
for all x it is clear that the derivative du/dz tends 
to infinity as x -7 O. It follows from (2.1), then, 
that b(z)v(z) must do the same. Consequently the 
initial condition for S is 

S(O) = ± co (2.24) 

according as b(x) is positive or negative near zero. 
In the same way one can deal with the function 

W(x) = v(O, x). In addition one can treat more 
general boundary conditions, using the linearity 
of the problem. We leave the details to the interested 
reader. 

D. Larger Systems of Linear Differential 
Equations 

For simplicity we have been considering the case 
of only two linear differential equations in two 
dependent variables. We next sketch the case of 
larger systems in order to illustrate the one essential 
difference which arises and how it can be dealt with. 
To emphasize the similarities let us write the system 
in the form 

dU(z)/dz = A(z)U(z) + B(z)V(z), 

-dV(z)/dz = C(z)U(z) + D(z)V(z), 
(2.25) 

where A, B, C, Dare n X n matrices and U, V are 
column matrices (vectors) of order n. We take the 
boundary conditions to be 

U = HVo, 

V = KVo, 

(2.28) 

(2.29) 

where H, K are n X n matrices with jth column 
the column of Ui, Vi, respectively. 

Denoting the solutions now by U(z, x), V(z, x), 
H(z, x), K(z, x), if it is the (matrix) function 

R(x) = U(x, x) (2.30) 

which is wanted, then in view of (2.28) we need 
to find 

rex) = H(x, x). (2.31) 

Differentiating, 

r'(x) = H1(x, x) + H 2(x, x). (2.32) 

For H1(x, x) we use (2.25) (with H, K in place 
of U, V), put z = x and remember the boundary 
conditions (2.27), obtaining 

H1(x, x) = A(x)r(x) + B(x). (2.33) 

For H 2 (x, x) we notice that ut V~ satisfy (2.25) 
also but with the second boundary condition 

V~(x, x) = - Vr(x, x). 

Consequently, 

U~(z, x) = -H(z, x)V~(x, x), 

V~(z, x) = -K(z, x)Vr(x, x). 

(2.34) 

(2.35) 

In particular, putting z = x and remembering the 
definition of H, 

U(O) = 0, Vex) = Yo. (2.26) Hix, x) = -H(x, x)K1(x, x) (2.36) 
It is this last boundary condition which promises = H(x, x)[C(x)H(x, x) + D(x)K(x, x)], 
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or 
Hlx, x) = r(x)[C(x)r(x) + D(x)]. 

When the unknown coefficients CR and ,iJ are 
(2.37) eliminated, these boundary conditions take the form 

Finally, using (2.33) and (2.37) in (2.32) we get 

r'(x) = B(x) + A(x)r(x) 

+ r(x)D(x) + r(x)C(x)r(x), (2.38) 

which, incidentally, agrees formally with (2.7). 
Other boundary conditions can be dealt with by 

making the obvious modifications so we omit the 
details. 

E. Discussion 

In this section we have developed a "mechanistic" 
method for obtaining the so-called "invariant im­
bedding" equations corresponding to a given linear 
system of differential equations without recourse to 
physical reasoning. Although the discussion has been 
a purely formal one, it can all be made perfectly 
rigorous without any difficulty. 

In the next section we apply several of these 
results to specific problems of physical interest and 
also show how slight extensions of the ideas can be 
made so as to handle a wider class of problems. 

m. SOME APPLICATIONS TO PHYSICAL 
PROBLEMS 

A. The Wave Equation 

We consider the problem of determining the re­
flection and transmission coefficients CR, ,iJ for a plane 
wave impinging perpendicularly on a slab of non­
homogeneous material sandwiched between two 
semi-infinite homogeneous media. Explicitly, let the 
slab occupy the region 0 .$ z .$ x and have wave­
number k(z) at the interior point z, and let kl' k2 
be the respective wavenumbers of the media to the 
left and right of the slab. We assume that a wave 
is incident from the right, resulting in a reflected 
wave in the region z > x and a transmitted wave 
(only) in the region z < O. Mathematically, 

!/t"(z) + k2(z)!/t(z) = 0, 0 < z < x, 

!/t(z) = e -ik. (.-.. ) + CR(x)eik• (.-.. ) , z > x, (3.1) 

1/ICz) = ,iJ(X)e-ik,., Z < o. 
The usual requirements of continuity of !/t and { 
yield 

!/teO) = Lge-ik,·] •• o, 

!/t'(O) = [d,iJe-ik"/dz] •• o, 

!/t(x) = [e-ik.(.-z) + CRe,k.(.-Z)] •• z, 

!/t'(x) = [d (e- ik• (z-.. ) + CReik• (Z-"»/dt] •• z. 

(3.2) 

(3.3) 

!/t'(O) + ik1!/t(0) = 0, (3.4) 

Now make the simple transformation from 1/1, !/t' 
to u, v defined by 

u = (1/2ik1)(!/t' + ik1!/t), (3.6) 

(3.7) 

Then by differentiating and using (3.1) we find that 
u, v satisfy 

u'(z) = (l/ik1Ckl + k2)]{ -k1[k\z) + klk2]U(Z) 

- k2 [k
2(z) - ki]v(z)} , (3.8) 

-v'(z) = [1/ik2(k1 + k2)] ( -k1[k\z) - k;]u(z) 

- k2 [k 2(z) + k1k2}v(z) I , 
u(O) = 0, vex) = 1. (3.9) 

Obviously this system is precisely of the form (2.1), 
so that if we define (writing now u(z, x) instead of 
u(z), etc.1 

R(x) = u(x, x), 

and apply (2.7), we obtain 

R'(x) = [1/i(kl + k2)J{k2k~1[ -k2(x) + k~] 
- 2W(x) + k1k2]R(x) 

(3.10) 

+ klk;l[ -e(x) + k;]R2(x)}. (3.11) 

R(O) = O. (3.12) 

In order to relate this result to our reflection and 
transmission coefficients, CR(x) and ,iJ(x) , we note 
from (3.6) and (3.7) that 

!/t(z, x) = [2/(k1 + k2)][k1u(z, x) + k2V(Z, x)] (3.13) 

!/t'(z, x) = [2iklk2/(kl + k2)][u(z, x) - v(z, x)]. (3.14) 

Putting z = x and using (3.3) we find that 

(R(x) = [2k1/(k1 + kz)]R(x) 

+ (k2 - k1)/(k2 + k 1), (3.15) 

so that from (3.11), finally, 

(R'(x) = (1/2ik2){W(x) - k~] 

+ 2W(x) + k~]CR(X) + [e(x) - k~]CR2(X)!, (3.16) 

and 
CR(O) = (k2 - k1)/(k2 + k1). (3.17) 

An equation for .g(x) may be found similarly using 
(2.18). We get 

,iJ'(x) = (1/2ik2){[k
2(x) + kij 

+ [k2(x) + k;]CR(x)}c9(x), (3.18) 

(3.19) 
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These results have been derived many times before 
and in many ways.6.6 The point we emphasize here 
is the relative ease of using the results of Sec. II 
directly. 

B. The Diffusion Equation 
Let us turn now to a simple problem of diffusion 

in a slab. 

D a2 e/az2 
= ae/at, o ::; z ::; x, (3.20) 

e(o, t) = 0, O(x, t) = 1, O(z, 0) = O. (3.21) 

We ask for the flux across the surface z = x. This 
amounts to computing oo/az !.-z. 

Define the Laplace transform of 0 with respect to t: 

O(z, s) = 10'" O(z, t)e-el dt. 

Applying the transformation to (3.20) gives 

D a2 0/al = sO, 

0(0, s) = 0, O(x, s) = l/s. 

To put (3.23) in a standard form we set 

fi(z, s) = sO(z, s), 

v(z, s) = soO(z, s)/Oz, 
and obtain 

ofi/az = v, 

-av/az = -(s/D)fi, 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

fiCO, s) = 0, fi(x, s) = 1. (3.27) 

Equations (3.26) are exactly of the form treated 
in Sec. IIC. Writing v(z, s, x) in place of v(z, s) in 
order to make clear the x dependence, as usual, 
and defining 

sex, s) == vex, s, x), 

S'(x, s) = s/D - S2(X, s), 

S(O, s) = + <Xl • 

The solution of (3.29) is well known: 

sex, s) = (s/ D)l coth [x(s/ D)!]. 

From (3.25) and (3.28) we get 

aO(z, s)/az!._z = (sD)-! coth [x(s/D)!] , 

the Laplace inverse of which is7 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

6 C. MacCallum, "Invariant Imbedding and Wave Propa­
gation in Inhomogeneous Media," Sandia Corporation Res. 
Rept. 4669 (1961). 

6 R. Bellman and R. Kalaba, J. Math. Mech. 8, 683 (1959). 
7 A. Erdelyi, M. Magnus, F. Oberhettinger, and F. E. 

Tricomi, Tables of Integral Transforms (Bateman Manu­
script Project)(McGraw-Hill Book Company, Inc., New 
York, 1954). 

ao 1 (1 tD) 
oz (z, t)!._~ = X 00 2' 7 ' (3.33) 

where eo is a theta function. 
Equation (3.33) has been derived earlier in a quite 

different manner.s It is obvious, of course, that the 
imbedding method is of no genuine advantage here, 
since the original problem can be readily handled. 
It is also clear, however, that our method is appli­
cable in far more difficult cases. 

C. The Time-Independent Transport Equation 

It was in his work on the transport equation that 
Ambarzumian9 employed a technique, subsequently 
exploited by Chandrasekhar,IO that stimulated recent 
interest in the methods of invariant imbedding. 

We consider the equation of transport in a slab 
of finite thickness x, assuming time independence, 
constant cross section, and isotropic scattering. In 
standard notation2 the equation is 

01 
p. az (z, p.) + ul(z, p.) 

1
1 

"fu 
= 2 -1 l(z, A) dA, -1 ::; p. ::; 1, 

and the boundary conditions are taken to be 

1(0, p.) = 0 for 0 < p. ::; 1, 

lex, p.) = t(p.) for -1::; p. < O. 

(3.34) 

(3.35) 

(3.36) 

The parameter p. here is the cosine of an angle, 
so that p. > 0 refers to flux to the right and p. < 0 
refers to flux to the left. f(p.) is the "input" at the 
right side. 

If we write U(z, p.) for l(z, p.) when p. > 0 and 
V(z, p.) for l(z, p.) when p. < 0, then this problem 
(3.34) resembles, at least vaguely, the system (2.25). 
We can make the resemblance clearer, perhaps, by 
rewriting the problem as 

~~ (z, p.) = [ -~ U(z, p.) + ~: f U(z, x) ax ] 

1
0 

"fu + -2 V(z, A) d"A, 
P. -1 (3.37) 

aV "fu 11 -- (z p.) = -- U(z A) dA 
az' 2p. 0 ' 

+ [~ V(z, p.) - ~: {I V(z, A) d"A J, 
8 R. Bellman, R. Kalaba, and G. M. Wing, J. Math. Mech., 

Vol. 9, 933 (1960). 
9 V. A. Ambarzumian, Compt. Rend. (Doklady) de 

l'Academie des Sciences de l'URSS, 38,229 (1943). 
10 S. Chandrasekhar, Radiative Transfer (Clarendon Press, 

Oxford, England, 1950). 
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U(O, p.) = 0, Vex, p.) = f(p.). (3.38) 

Whereas in the previous problem (2.25), U was for 
each z in (0, x) a matrix of n elements, in our present 
problem it represents for each z a function of the 
continuous variable p. > O. Where the previous 
boundary condition for V involved an arbitrary 
matrix of n elements, our present condition involves 
an arbitrary function of p. < O. 

One could, if he wished, use the resemblance 
between the system (2.25) and (3.37) together with 
the usual analogy between sums and integrals in 
order to infer the invariant imbedding equation 
for our present problem from Eq. (2.38). But 
if one wishes to make his derivation rigorous, it is 
probably better to use the previous problem as only 
an analogy. 

Thus (2.28) and (2.29) must be replaced by an 
appropriate representation in terms of integrals. 
Duhamel's principal leads to 

U(z, p., x) = J:l H(z, p., p.', x)f(p.') dp.' (3.39) 

in place of (2.28), as expected. Trying to write V 
in exactly the same fashion in terms of a kernel 
K(z, p., p.', x) would require K to be not an ordinary 
function but a symbolic one; i.e., K would involve 
a delta function. This is, of course, only a minor 
complication which can be dealt with in many ways,' 
but it turns out that (3.39) is all we need here. 

Differentiating 

R(x, p.) = U(x, p., x), (3.40) 

gives 

R 1(x, p.) = U1(x, p., x) + Ua(x, p., x) 

U 'YU fl = -- R(x, p.) + -2 R(x, X) dX 
p. p. ° 

+ 'Y
2

u JO f(p.') dp.' + Ua(x, p., x), (3.41) 
p. -1 

using (3.37) with z = x. We get Ua in terms of R, 
as usual, by noticing that Ua, Va satisfy (3.37) with 
the last boundary condition replaced by 

(3.42) 

Duhamel's principal (i.e., linearity) again yields 

Ua(z, p., x) = - LO

l H(z, p., p.', x) V 1(x, p.', x) dp.'. (3.43) 

Using this (with z = x) in (3.41) gives 

R 1(x, p.) = -~ R(x, p.) 
p. 

+ 'Y
2

u 11 R(x, X) dX + "12fT fO f(p.') dp.' 
p. ° P. -1 

+ LOI H(x, p., p.', x){ -;; 11 R(x, X) dX 

+ [u, f(p.') - 'YU, JO f(p.") dP."]} dp.'. (3.44) 
p. 2P.-I 

Finally, in analogy with (2.31), write 

rex, p., p.') = 27fH(x, p., p.', x). (3.45) 

(The 211" is just so that our results will agree exactly 
with those of other writers.) Then by (3.39) 

R(x, p.) = LOl H(x, p., p.', x)f(p.') dp.' 
(3.46) 

= :11" fl rex, p., p.')f(p.') dp.', 

and substituting in (3.44) we get, after some 
manipulation, 

{I f(p.')(r1(x, p., p.') + IT(; - !,)r(x, p., p.') 

'YIT1I" JO "" "1fT 11 , dX + 7 -1 rex, p., p. ) dp. -"2 ° rex, X, p. ) X 

11 dXJO ) - ~; ° rex, x, p.') X -1 rex, p., p.") dp." dp.' = o. 
(3.47) 

Since this equation must hold for arbitrary functions 
I, the quantity in parentheses must vanish. For 
example, 

:; (x, p., p.') = -7:11" - u(; - !, )r(x, p., p.') 

"1fT 1° "1fT 11 dX - 2p.' -1 rex, p., p.") dp." +"2 ° rex, X, p.') X 

+ ~; { rex, X, p.') d: 1:1 rex, p., p.") dp.". (3.48) 

Evidently also 
reO, p., p.') = o. (3.49) 

Equation (3.48) was first obtained in quite a 
different way by Ambarzumian. Whereas we have 
used purely mathematical arguments concerning the 
mathematically formulated problem (3.34), he pro­
ceeded directly from the physical problem via phys­
ical arguments, i.e., "particle counting." Equation 
(3.48) has been obtained in several different 
ways,2 0

9
o
10 and has proved valuable for computa­

tional purposes. lOoll 

11 R. Bellman, R. Kalaba, and M. C. Prestrud, Invariant 
I mhedding and Radiative Transfer in Slabs of Finite Thicknes8 
(Elsevier Publishing Company, Inc., New York, 1963). 
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There are, however, several advantages inherent 
in the kind of derivation we have just given. For one 
thing, it can be made rigorous.4 For another, with 
only added notational complexity it can be extended 
to cases in which 0' is dependent upon x and in 
which anisotropic scattering is allowed. Finally, this 
same kind of derivation applies equally well to 
transport problems in other geometries. 

This last observation is quite important. For when 
the case of transport in a sphere was treated in the 
above way the resulting invariant imbedding equa­
tion contained an extra term which had been over­
looked in the previous particle counting derivations. 
Retrospective analysis of the particle counting 
method as it had been applied to the sphere and 
cylinder has revealed the subtle source of error.12 

D. The Time-Dependent Transport Equation 

The fact that the time-dependent transport equa­
tion can be handled with only a little additional 
effort comes as an unexpected bonus. Consider the 
problem 

10f of -;; at (z, p., t) + p. oz (z, p., t) + O'f(z, p., t) 

[(0, p., t) = 0 

= 'Y; Lll fez, p.', t) dp.', 

for p. < 0, t > 0, 

(3.50) 

(3.51) 

[(x, p., t) = f(p., t) for p. < 0, t > 0, (3.52) 

fez, p., 0) = 0 for -1 <p. < 1, 0 <z < x. (3.53) 

Denoting the Laplace transform of [(z, p., t) by 
l(z, p., 8), etc., we get 

p. ~~ (z, p., 8) + (0' + ~)l(z, p., 8) 

= ~ fl l(z, p.', 8) dp.', 

1(0, p., 8) = 0 for p. > 0, 

lex, p., 8) = j(p., 8) for p. < o. 

(3.54) 

(3.55) 

(3.56) 

Comparing with (3.34) and replacing the 0' on 
the left side there by 0' + 8/C, shows that the 
equation satisfied by 

rex, p., p.', 8) = 27r.fl(x, p., p.', 8, x), 

where f1 is the representation kernel for 

(3.57) 

l(z, p., 8, x) = fOl f1(z, p., p.', 8, x)J(p.', 8) dp.', (3.58) 

12 P. Bailey and G. M. Wing, J. Math. Anal. Appl. 8, 170 
(1964). 

is 

of 
ox 

O''Y 1° -( ") d "+ 'YO' 11 -C ') dX. - 2p.' -1 r x, p., p. ,8 P. 2 ° r x, X, p. ,8 X 

+ 'Y0'11-( , , ) dX. fO -( ")d " 411" ° r x, A, p. ,8 X -1 r x, p., p. ,8 P. • (3.59) 

Dividing by 8 and taking inverse Laplace transforms 
gives 

op + ! (! _ !,) op 
ox C p. P. ot 

'Y0'1I" 'YO' fO --, - -2 ' p(x, p., p.", t) dp." 
p. P.-l 
'YO' 11 , dX. + 2 ° p(x, x., p. , t) }; 

( 1 1) + 'YO' 11 11 ( ., ) dX 
- 0' ~ - p.' P 411" ° ° P x, A, p. , t - T X 

X f o op ( ") d " d -;- x, p., p. ,T P. T, 
-1 uT 

(3.60) 

where 

p(x, p., p.', t) = fol rex, p., p.', T) dT. (3.61) 

This equation has been the basis of some recent 
extensive calculations.1s 

IV. FURTHER APPLICATIONS 

A. Introduction 

In this chapter we apply the ideas of this paper 
to the study of nonlinear difference equations and 
to the phase-shift problem of wave mechanics. While 
the techniques employed still come under the general 
heading of invariant imbedding, the reader will 
note a slightly modified point of view. It is for this 
reason that these examples are put in a new section 
rather than being included in the previous one. 

B. Difference Equations 

Consider the system of difference equations 

u(z + 1) - u(z) = f[u(z), v(z), z] 

-v(z + 1) +v(z) = y[u(z), vCz), z], for 0:::; z:::; x, (4.1) 

u(O) = 0, u(x) = y. (4.2) 

13 R. Bellman, H. H. Kagiwada, R. Kalaba, and M. C. 
Prestrud, Invariant Imbedding and Time-Dependent Trans­
port Processes (Elsevier Publishing Company, Inc., New 
York, 1964). 
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If our interest is in the value of v at the end z = x, 
then we can denote by u(z, X, y), v(z, x, y) the 
solution to (4.1) and look for a suitable equation 
for the function 

sex, y) = vex, x, y). (4.3) 

(The additional parameter y is necessary because 
our problem this time is nonlinear.) 

Now u(z, x + 1, y), v(z, x + 1, y) are the solution 
functions to the same system (4.1) but with the 
last boundary condition 

u(x + 1, x + 1, y) = y. (4.4) 

Hence if we extend the definitions of u(z, x, y), 
v(z, x, y) slightly by 

u(x + I, x, y) = u(x, x, y) 

+ f[u(x, x, y), vex, x, y), x], (4.5) 

vex + I, x, y) = vex, x, y) 

- g[u(x, x, y), vex, x, y), x], (4.6) 

and assume that the system (4.1) has a unique 
solution u, v for each x, y, then by choosing 

y = u(x + 1, x, y) (4.7) 

we shall have succeeded in arranging matters so 
that actually 

u(z, x, y) = u(z, x + 1, y), 

v(z, x, y) = v(z, x + 1, y) 

for all x, y and all z =:; x + 1. 

(4.8) 

(4.9) 

Putting z = x + 1 in (4.9) and using (4.6) and 
(4.3), gives 

Sex + 1, y) 

= sex, y) - g[u(x, x, y), sex, y), x]. (4.10) 

Hence from (4.7), (4.5), (4.2), finally, 

S(x + 1, y + fry, sex, y), xJ) 
= sex, y) - g[y, sex, y), xJ. (4.11) 

To determine the initial condition for S take x = 1. 
Then from (4.1) it is easy to see that 

y = frO, S(O, y), OJ. (4.12) 

We assume that (4.12) is solvable for S(O, y). 
As an example, suppose that the system (4.1) is 

really linear: 

f[u(z), v(z), z] = a(z)u(z) + b(z)v(z), 

g[u(z), v(z), z] = c(z)u(z) + d(z)v~). 
(4.13) 

Then it must be the case that 

Sex, y) = ys(x) (4.14) 

for some s. Hence (4.11) and (4.12) reduce to 

s(x + 1) = c(x) + s(x)[1 + d(x)J (4.15) 
1 + a(x) + b(x)s(x) 

s(O) = I/b(O). (4.16) 

We note in conclusion that the method of this 
section suggests a way14 of handling nonlinear dif­
ferential systems by invariant imbedding. 

C. The Phase-Shift Problem 

In the last section a slightly different approach 
was introduced. Results there were obtained by 
enlarging the domain of the solution of a system 
of difference equations, obtaining the solution to a 
new system on an extended interval. The two prob­
lems then have identical solutions over their common 
domains. 

We now apply this reasoning to the classical phase­
shift problem. Consider the system 

y"(t) + yet) = f(t)y(t), (4.17) 

We require 

It is known that 

yeO) = Eo cos 80, 

y'(O) = Eo sin 00 • 

Ja> IJ(t) I dt < co 

(4.18) 

(4.19) 

yet) = A cos (t - a) + 0(1) (4.20) 

for large t. The amplitude, A, and the phase shift, 
a, are clearly dependent upon fo and 00 , We intend 
to find that relationship. 

For any value of t ;::: 0, say t = x, we may write, 
by proper choice of E and 0, 

y(x) = f(X) cos O(x), 

y'(x) = E(X) sin O(x). 

In particular, of course, 

f(O) = Eo, 0(0) = 00 , 

(4.21) 

(4.22) 

Now it is well known that the solution to (4.17) 
satisfies the integral equation 

yet) = E(X) cos [t - x - O(x)] 

+ [ sin (t - r)J(r)y(r) dr. (4.23) 

14 R. Bellman, R. Kalaba, and G. M. Wing, Proc. Nat. 
Acad. Sci. U. S. 46, 1646 (1960). 
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Since yet) is independent of x, we have by differentia- and so 
tion 

o = E'(X) cos [t - x - O(x)] 

+ E(x)[1 + O'(x)] sin [t - x - O(x)] 

- sin (t - x)f(x),:(x) cos 8(x). 

But (4.24) holds for all t ;::: O. Therefore, 

E'(X) = E(x)f(x) sin O(x) cos 8(x), 

8'(x) = -1 - f(x) cos2 8(x). 

(4.24) 

(4.25) 

By integrating (4.25) subject to (4.22) one may find 
E(X) and 8(x). 

As yet there is no obvious connection between 
E and 8 and the quantities A and a in (4.20). To 
find this we rewrite (4.23): 

yet) = E(X) cos [t - x - 8(x)] 

+ {D sin (t - T)f(T)Y(T) dT 

- {' sin (t - T)f(T)Y(T) dT. (4.26) 

(That the integrals converge is a result of (4.19) and 
the fact that y is bounded. IS) From (4.26), 

yet) = E(X) cos [t - x - 8(x)] 

+ sin t i'" cos Tf(T)Y(T) dT 

+ cos t i'" sin Tf(T)Y(T) dT 

- f.'" sin (t - T)f(T)Y(T) dT, (4.27) 

which we write as 

yet) =!A(x) cos [t - x - a(x)] 

- 1,'" sin (t - T)f(T)Y(T) dT. (4.28) 

But 

~~ f'" sin (t - T)f(T)Y(T) dT = 0, (4.29) 

so that (4.28) is exactly in the form (4.20) with 

A(O) = A, a(O) = a. (4.30) 

Differentiating (4.28) with respect to x gives 

o =.'A'(x) cos [t - x - a(x)] 

+ A(x)[l + a' (x)] sin [t - x - a(x)], (4.31) 

Ii G. M. Wing, J. Math. Anal. Appl. (to be published). 

A'(x) = 0, 

Thus, using (4.30), 

A(x) = A, 

a'(x) = -1. 

a(x) = -x + a. 

(4.32) 

(4.33) 

Finally subtract (4.28) from (4.27) and let x _ en. 

This yields 

lim E(X) = A, lim (O(x) + x] = a. (4.34) 

The second equation of (4.33) suggests defining 

ljI(x) = O(x) + x. 

Then the system (4.22) and (4.25) becomes 

E'(X) = !E(x)f(x) sin 2[ljI(x) - x], 

ljI'(x) = -f(x) cos2 (ljI(x) - x], 

E(O) = Eo, ljI(O) = 00 , 

(4.35) 

(4.36) 

(4.37) 

The amplitude A and phase shift a are found by 
solving (4.36) and evaluating E( ex» and ljI( co). 

The results we have obtained are equivalent to 
those of Franchetti,I6 derived by him in a somewhat 
simpler way. The advantage of the present scheme 
lies in the fact that it is readily generalizable to 
systems more complicated than (4.17). For a more 
complete and rigorous analysis, together with a dis­
cussion of other differential equations, the reader 
is referred to Wing,15 where the imbedding is done 
from a somewhat different viewpoint. 

V. SUMMARY 

It has been our intention in this article to describe 
briefly the evolution of the invariant imbedding 
method over the last few years and to indicate the 
unification produced by these developments. No 
attempt has been made at a complete review of the 
subject. Examples chosen are only representative 
and the authors are aware of numerous other applica­
tions of the method that have recently been made. 
In the interest of brevity we have not discussed 
these nor provided detailed references. Our aim has 
been to give the interested reader enough insight 
into the imbedding method to allow him to read 
existing and forthcoming material with relative ease 
and understanding. We hope, too, that this paper 
will lead physicists and applied mathematicians to 
consider the possibility of applying the method to 
other classes of problems. 

16 S. Franchetti, Nuovo Cimento 6, 601 (1957). 
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A formula is given that extracts the pole contribution to a Feynman diagram having an internal 
line. The result is more complicated than earlier results for diagrams with only a single loop since 
the result is not directly expressible as the pole multiplied by a numerator that is the sum of the 
reduced diagrams. The apparent discrepancy with Cutkosky's formula for the residue of the pole is 
reconciled. The algebraic techniques employed are in principle applicable to the problem of determin­
ing the Landau surface when the diagram has several loops. A derivation of Stokes' formula for 
Feynman parametric integrals is given. 

I. INTRODUCTION 

SEVERAL examples have been given in the last 
few years of formulas that explicitly exhibit the 

pole contribution to a Feynman diagram. I
-

6 These 
take the form of a rational expression, the de­
nominator is the determinant that vanishes on the 
Landau surface/ and the numerator is the sum of 
the contributions of all diagrams formed by leaving 
out one line at a time, each contribution being 
multiplied by a polynomial. All of these formulas 
are derived for diagrams with only one loop. In this 
paper an example is given of this type of formula 
for a diagram with an internal line. 

A large amount of algebra has to be done to get 
the formula. However, the solution is sufficiently 
simple that one might hope that a simpler technique 
to find it could be developed. An auxiliary result 
of this labor is a systematic method of determining 
the Landau surface for a diagram with several loops. 
That is, a necessary and sufficient condition is found 
for a system of n homogeneous polynomials in n 
unknowns to have a nontrivial solution. In Sec. II 
the general conditions under which a diagram has 
a pole are discussed. The application of Stokes 
theorem to give a formula explicitly exhibiting the 
pole is considered. For diagrams without poles the 
Stokes theorem will not work, but the same algebra 
will lead to an expression for the Landau surface. 
Section III contains a particular example of a 
self-energy diagram in a two-dimensional field theory 
worked out in detail. 

1 G. KiHUm and A. S. Wightman, Kg!. Danske Videnskab. 
Selskab, Mat. Fys. Medd. 1, No.6 (1958). 

2 L. M. Brown, Nuovo Cimento 22, 178 (1961). 
a F. R. Halpern, Phys. Rev. Letters 10, 516 (1963). 
( S. Klarsfeld, Phys. Letters 5, 204 (1963). 
, C. M. Sommerfield (private communication). 
8 L. D. Landau, Nucl. Phys. 13, 181 (1959). 

n. GENERAL CONDITIONS FOR POLES AND THE 
APPLICATION OF STOKES THEOREM 

Consider a diagram with n internal lines l loops 
in a space-time of a + 1 dimensions. Its analytic 
expression will be called F. There are (a + l)l 
integrals to be performed if the integral representing 
F is written down in momentum space. Cutkosky1 
has given a formula for the discontinuity of the 
function F across any of its cuts. The prescription 
is to replace propagators by 0 functions. If there are 
more than (a + l)l internal lines, that is, if 

n > (a + l)l, 
then (a + l)l of them can be replaced by 0 functions 
and all the integrals can in principle be done, but 
there will be some propagators left. Thus the dis­
continuity has a pole and thus F itself has a pole 
on some sheets. 

As an alternative approach to discover the exist­
ence of pole we may ask if a formula of the type 
given in Refs. 1-5 exists. In the following discussion, 
the usual simplifying assumption that all particles 
are scalars is made. The expression for a diagram 
with n internal lines, lloops in (a + I)-dimensional 
space-time is: 

F = A J ... J da
+

1k1 ... da
+

1k z IT A~\ (1) .-1 
where A. = q~ + m~, and the momentum q. of the 
ith line is to be expressed in terms of the external 
momenta and the loop momenta k i • Chisholm's 
formula 8 permits F to be rewritten as 

F = A' i 1 

••• i 1 

dal ... dan 

0(1 - a)(det A),,-(a+l) (Z+I)/2 

X A,,-(a+I)I/2 • (2) 

7 R. E. Cutkosky, J. Math. Phys. 1, 429 (1960). 
8 R. Chisholm, Proc. Cambridge Phil. Soc. 48,300 (1952). 
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The l-rowed determinant A is defined from the 
expression 

L A.a. = A~.k~k. + 2 L k~ + :s;, 
~ 

while .1 is the (l + I)-rowed determinant 

A = I~ ~I, 
and a = La •. 

In Appendix I a proof is given of a version of 
Stokes' theorem applicable to integrals over the 
domain zero to one in n variables a. subject to the 
restriction a = 1. The elements of .1 and A are 
homogeneous linear functions of the a. Thus .1 and 
A are homogeneous polynomial of degree l + 1 
and l in the a's. The denominator is thus a homo­
geneous expression of degree (l + 1)[n - (a + l)l/2J 
and the numerator is one of degree 

l[n - (a + 1)(l + 1)/2]. 

To apply Stokes' theorem a set of functions 
F" (a = 1, 2, "', n) is required with L: F. = 0 and 

(det Ar-(a+1)(1+1)/2 

(.1r- l (a+l)/2 (3) 

The problem may be restricted to be a completely 
algebraic one by looking for F" of the form, F" = 
N,,/(.1t- l

(a+l)/2-l where Na is a polynomial in the 
a's. If this is substituted in (3), the equation for 
N. becomes 

.1 aN.;aa. - [n - lea + 1)/2 - I]N. aA/aa. 

= (det Ar-(a+1)(1+1)/2. (4) 

If a set of functions p. such that 

Pi aA/aa. = (det Ar-(a+l) (1+1)/2, (5) 

and 

are n('+;-l) unknowns in (5) and, since the right­
hand side has degree r + l, there are ('+;+/-1) linear 
equations in (5). There are C;;~12) further equation 
in (5a). For a solution there should be as many 
unknowns as equations, that is 

(n + r - I)! 
n 

r!(n - I)! 

> (n + r + l - 1)! + (n + r - 2)! 
- (r + l) !(n - I)! (r - 1) !(n - 1)! (8) 

Roughly speaking, a large l must be compensated 
by a large n. 

Since the system of equations (5) and (5a) are 
linear, there are some restrictions on the coefficients 
for the equations to be soluble. The coefficients are 
of course the masses and invariant energies. If the 
equations a.1/aal = 0 have a simultaneous solution, 
that is for values of the invariants on the Landau 
surface, then Eqs. (5) and (5a) will not have solutions 
unless (det A) vanishes. Thus the condition on the 
coefficients that a solution should not exist (vanish­
ing of a determinant) is the equation of the Landau 
surface. 

To extract a pole contribution it is necessary to 
satisfy (7) and (8) simultaneously. From (7) it 
follows that r is an increasing function of nand 
(8) is easier to satisfy for large r. Thus if a diagram 
has a pole, increasing the number of internal lines 
without adding loops retains the pole. Actually, the 
order increases. This is in accord with the earlier 
result that n > lea + 1). The interesting numbers 
are the smallest pair (n, r) for each value of l that 
satisfy (7) and (8). For example, for l = 1 (7) and (8) 
become 

r = n - 1 - (a + 1), (7') 

aP';aa; = 0, 
n (n + r - I)! > en + r)! + (n + r - 2)! (8') 

(5a) r!(n - 1)! - r!(n - 1)! (r - 1)!(n - 1)! 

then a satisfactory set of N i is given by 

N. = (Pa. - P;a)/[n - lea + 1)/2 - 1], 

where P = L p., and the degree of P must be 

(6) 

r = lien - 1) - (l + 1)(a + 1)/2]. (7) 

That the N. are a solution of (4) may be verified 
by substitution of (6) into (4). Conversely, if a 
solution of (4) exists it may be put in the form (6). 
The equations (5) and (5a) are to be regarded as 
linear equations for the coefficients of the n poly­
nomials P;. A homogeneous polynomial of degree r 
in n variables has ('+;-1) coefficients. Thus there 

These are both satisfied for r=O and n=1+(a+l). 
The same as n = 1 + lea + 1) with l = 1. For 
l = 2, (7) and (8) become after some simplification 

r = 2en - 1) - 3(a + 1), (7") 

(n - 1);::: (n +r+ 1)(n +r - 1)/(r+ 1)(r+ 2). (8") 

The simplest case that works is a + 1 = 2, r = 2, 
and n = 5, which again satisfies the n = 1 + lea + 1) 
requirement. The example, a = 1, r = 2, n = 5, is 
worked out in detail in the next section, that is, 
the polynomials p. are solved for. Although it is not 
obvious that (7) and (8) are equivalent to n = 1 + 
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lea + I), the two results are identical for the simple 
cases checked so far. It seems reasonable then that 
whenever a pole exists, Stokes' theorem is ap­
plicable in principle. 

Ill. AN EXAMPLE 

As an illustration of the use of Stokes' theorem 

The masses of all five internal particles have been 
chosen all equal to m for simplicity. 

The quantities det A and ~ are found in this 
case to be 

+ ala; + a~ + 3 + a~a4 + a;a5 + a2a~ + a2a! 

+ a2a~ + a~as + aaa! + a!a5 + a4a!) 

+ (P2 + 2m
2
)(ala2aa + a1a2a4 + ala2aS + a1aaa4 

+ a2aaa4 + aaa4aS) + (P2 + 3m2)(alaaaS + a2a4aS) 

+ 3m2(a1a4aS + a2aaas). 

The degree of the P!s is r = 2. So that in this 
case the P/s are of the form: p. = aijkaiak. For 
each i, aijk forms a symmetric 5 X 5 matrix in j 
and k to give 15 independent elements. Then for 
all i there are 75 elements. 

Since the mass have been chosen equal, there 
exists some symmetry in (det ~)2 and a~/aa. that 
may be exploited to simplify the calculation some­
what. (See Appendix II for a~/aai.) Any permuta­
tion of the a/s which leaves (det ~)2 and a~/aa. 
invariant must also leave the PIs invariant. When 
all such possible symmetries are taken into account, 
the PIs are of the form given in Appendix III. 

When the coefficients of aiaiakal are set equal in 
Eq. (5), 70 equations for the 21 unknowns which 
appear in the P/s are found. 

However, only 17 of these 70 equations turn out 
to be independent. These are listed in Appendix III. 
Also, there is one more condition, that of Eq. (5a). 
This produces the requirement that 

(2A + F + G + H + U)(tai) 

+ (41 + 2Q)ai = 0, 

FIG. 1. A graph 
whose analytic expres­
sion contains a pole in 
a two-dimensional field 
theory. 

the graph of Fig. 1 is considered in (1 + I)-dimen­
sional space-time. 

The contribution from this graph is 

which yields the equations 

2A + F + G + H + U = 0 

and 21 + Q = o. 

(9) 

The 19 equations thus found are self-consistent. 
Since there are 21 unknowns, two arbitrary con­
stants remain in the solutions which do not affect 
the value of the integral. The solutions are listed 
in Appendix IV. 

The formula of Appendix I can now be applied 
and the integral (9) becomes the sum of five integrals, 

(10) 

where 

Ii = [ ... [ iI dai 0(1 - t ai)(~;) . (11) 
o 0 Jr!' 1~1 Qi-O 

Upon permuting the integration variables in II, 12, 

la, and 14, it can be shown that these four integrals 
are equal. 

It was found to be impossible to interpret the 
five integrals as the expressions of the five four-line 
graphs shown in Fig. 2. In the case of the single 
loop, the correspondence is possible since the num­
erator is very simple, det A = a. But in this case, 
the numerators of the integrands cannot be made 
equal to those of the four-line graphs although there 
are two free parameters in the solution. The de­
nominators are, however, equal. 

Since the integral I is independent of the choice 

-66-
1 4 

FIG. 2. The five 
possible contrac­
tions of Fig. 1. 



                                                                                                                                    

466 F. R. HALPERN AND W. WILSON 

of Band 0, the choice of B = 0 = 0 immediately 
reveals a singularity at p 2 = - 3m2

• Since on the 
physical sheet the propagator has only a pole at 
p 2 = _m2 and a cut starting at p 2 = -4m2

, the 
singularity at p2 = -3m2 must be on an unphysical 
sheet. 

The existence and position of this singularity can 
also be easily seen from Cutkosky's recipe for 
finding the residues of poles. If in integral (9) the 
change of variables: 

x = (P - k)2, y = k2
• Z = 1\ w = (P - l)\ 

or 

k _ P1(Y - x + p2) + poley - x + P2)2 - 4Py]l 
1- 2p2 2P2 , 

k _ Po(Y - X + P2) + P1[(y - x + P2) - 4Py]l 
0- 2p2 2p2, 

_ P1(Z - w + P2) + Po[(Z - w + p 2
) _ 4p2z]i 

II - 2P 2P2 ' 

_ Po(z - w + P2) + P1[(z - w + p 2
) _ 4P2z]l 

10 - 2p2 2p2' 

is made; then the pole occurs at (p-k-l)2+ m2=0. 
Upon making the transformation and putting x=y= 
z = w = _m2

, the pole at p2 = -3m2 appears. 
The numerator of Eq. (11) should reduce to the 

above expression at p2 = -3m2
, so that although 

the residue of the pole is not expressed as the sum 
of other diagrams in an obvious manner, the num­
erator of (11) does have this correct value at the pole. 

APPENDIX I: PROOF OF A STOKES THEOREM 

The following notation is introduced to simplify 
the ensuing discussion: 

J F = { dX1 { dX2 ••• { dXn 

X 8(1 - Xl - X2 - ••• - x,,)F(x l • XlI, "', xn ). 

1 F = 11 dXI 11 dX2 .,. 11 dx" 
OJ'''k 0 0 0 

X 8(1 - Xl - X2 - ••• - Xn) 

X F(Xl' X2, "', x .. ) 8(x,) 8(Xj) '" c5(xk)' 

Lemma I: 

I = J (aF - aF) = 1 F - 1 F. (AI) 
ax; aXj ; ; 

Proof: The proof is carried out for i = 1 and 
; = 2 to avoid notational difficulties. First, the 
integral with respect to x" is carried out using the 

factor 15(1 - Xl - X2 - ••• - X .. ). The total deriv­
atives are then given by 

dF aF aF 
a .= n, 

so that 
aF aF dF dF 

Now the two total derivatives may be integrated 
easily, the first over Xl and the second over Xli' 

The integrals over the variables Xa, X4, •• , , Xn-l 

are identical, the only difference being in the in­
tegrals over Xl and X2. To symbolize this the nota­
tion J E will be used to represent the integrals over 
Xa, X4, ••• , Xn-l with appropriate limits, and the 
number ~ = Xa + X4 + ... + X .. - 1• 

f {ll-i ll-i-~' dF 
1= dX2 d- dXI 

£ 0 0 Xl 

After integration and substitution of the limits of 
integration 

I = ~ {J:- i 

dX2 [F(l - ~ - X2, X2, Xa, ••• ,X .. - 1 , 0) 

- F(O, X 2 , Xa, ••. ,X,,-l, 1 - ~ - x2)] 

1
1-£ 

- 0 dX1 [F(X1' 1 - ~ - Xl, Xa, ••• ,X,,-l, 0) 

- F(Xl' 0, Xa, •• , ,X .. -I, 1 - ~ - Xl)]}' 

The first term in the integral over Xl and X2 cancel 
each other out identically which can be seen by 
making the substitution 71 = X2 in the X2 integral 
and t] = 1 - ~ - Xl in the second. Thus I is given by 

I = ~ {il

-
E 

dXl F(XI' 0, Xa, '" ,X .. -I, 1 - ~ - Xl) 

but this is just the required answer if the 15 functions 
on the right-hand side of (AI) are used to do two 
integrals. The specialization to 1, 2, and n is not 
necessary but saves some notation. If there are only 
two variables Xl and Xli the proof is trivial. 

Lemma II: If Fob = -Fbo and F" = L:'..l F"b 
Ca, b = 1, 2, ... , m), then 

(A2) 
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Proof: 
LFG = L LFGb 

= L (FGb + Fbo) 
a>b 

LO = o. 
Lemma II I: Given a set of functions F G such 

that L F G = 0, there is at least one set offunctions 
Feb with Fob = -Fba such that 

Fa = L Fob. 
b 

Proof: Write the functions Fab as an m by m 
matrix a suitable choice is 

o 
o 

o 

o 
o 

o 

o 
o 

o 
-Fl -F2 -F .. -l 0 

Theorem: If 1: F 0 = 0 then 

(A3) 

Since 1: F G = 0, Lemma III may be applied to 
determine a set of functions F ab. The integrand of 
the left-hand side of (A3) is modified by the following 
sequence of steps: 

L aFa/ax. = L L aFab/axa 
a a b 

= ! 1: 1: (aFab/axa - aFab/aXb). 
o b 

Thus we have 

I = ! L L J (aFab/ax. - aF.b/aXb). 
a b 

Lemma I may be applied to integrate this, and 
finally some substitutions and the properties of the 
functions Fob to complete the proof: 

I = ! ~ ~ {1 F.b - i FOb} 

~ ~ {1 Fob - 1 FbO} 

~ ~ 1 Fob 

- 1: 1 Fb • 
b b 

APPENDIX n 
al:l./aal = m2(a~ + a! + a~) + 2m2alaa + 2m2ala, 

+ 2m2alaS + (P2 + 2m2)a2aa + (p2 + 2m2)a:aa, 

+ (P2 + 2m2)a2aO + (P2 + 2m2)aaa, 

+ (P2 + 3m
2
)aaas + 3m2a4aS' 

al:l.jaa2 = m2(a~ + a! + a;) + (P2 + 2m2)alaa 

+ (P2 + 2m2)ala4 + (P2 + 2m2)ala6 

+ 2m2a2aa + 2m2a2a4 + 2m2a2aS + (P2 + 2m2)aaa" 

+ 3m2aaas + (P2 + 3m2)a4a5. 

al:l./aaa = m2(a~ + a~ + a~) + (P2 + 2m~ala2 
+ 2m2alaa + (P2 + 2m2)ala, 

+ (P2 + 3m2)ala6 + 2m2a2aa + (P2 + 2m~a2a" 
+ 3m2a2aa + 2m2aaa5 + (P2 + 2m

2
)a4aS' 

al:l./aa, = m2(a~ + a~ + a;) + (P2 + 2m2)ala2 

+ (P2 + 2m2)alaa + 2m2ala4 + 3m2alaS 

+ (P2 + 2ma)a2aa + 2m2a2a4 + (P2 + 3m2)a2a6 

+ (P2 + 2m2)aaas + 2m2a4a5. 

al:l./aas = m2(a~ + a~ + ai + a;) + (P2 + 2m2)ala2 

+ (P2 + 3m2
)alaa + 3m2ala4 + 2m2alaS 

+ 3m2a2aa + (P2 + 3m2)a2a4 + 2m2a2aa 

+ (P2 + 2m2)aaa4 + 2m2aaas + 2m2a4aO. 

APPENDIX m 
PI = Aa~ + Ba~ + Cai + Da; + Ea! + Fala2 

+ Galaa + Hala4 + lalao + Ja:aaa + Ka2a" 

+ La2a5 + Maaa4 + Naaao + Oa4ao. 

P2 = Ba~ + Aa~ + Dai + Ca; + Ea; + Fala2 

+ Kalaa + Jala4 + Lalao + Ha2aa + Ga2a, 

+ Ia2as + Maaa4 + Oaaao + Na4aO. 

Pa = Ca~ + Da~ + Aa~ + Ba; + Ea: + Mala2 

+ Galaa + Jala4 + Nala5 + Ha2aa + Ka2a, 

+ Oa2a5 + Faaa4 + Iaaas + La4as. 

P4 = Da~ + Ca~ + Ba~ + Aa~ + Ea~ + Mala2 

+ Kalaa + Hala4 + Oala5 + Ja2aa + Ga2a, 

+ Na2a6 + Faaa4 + Naaao + la4aS. 

Pa = P\a~ + a~ + a~ + a;) + Qa~ + Rala2 

+ Salaa + Tala4 + Ua2aS + Ta2aa + Sa2a, 

+ Ua2aS + Raaa4 + Uaaa5 + Ua4aS. 
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APPENDIX IV 

The coefficients from which the equations come 
are listed on the left. 

Ci~ : C + D + P = 0, 

Ci~Ci2 : 2M + R = 0, 

Ci~Ci4 : 2m2A + (P2 + 2m2)B + p 2C 

+ m2
(H + J + P + T) = 0, 

Ci~Ci5 : 2m2 A + (P2 + 2m2)B + (P2 + m2)C 

+ m2
D + m2(N + 0 + U) = 0, 

Ci: : E = 0, 

CiiCi~ : 2m2(A + B) + 4m2G + 2(P2 + 2m2)K 

+ 2m2p + (P2 + 3m2)S = 1, 

CiiCi; : 2m2(A + B) + 4m2H + 2(P2 + 2m2)J 

+ 2m2p + 3m2T = 1, 

+ 5m
2 
J + (P2 + 5m2)K + (P2 + 6m2)L 

+ p 2M + (P2 + 4m2)(N + 0) 

+ 2m2(S + T) + 2p2 + 8m2U = 4, 

CilCi2Ci~ : 2m2 F + 2(P2 + 2m2)J + 4m2 L + 2m2M 

+ 6m2N + 2(P2 + 3m2)0 

+ (P2 + 2m2)Q + 4m2U =2, 

CilCi3Ci; : 2m2G + 2(P2 + 3m2)J + 2m2K 

+ 6m2L + 4m2N + 2(P2 + 2m2)0 

+ (P2 + 3m2)Q + 4m2 = 2, 

CilCi4Ci~ : 2m2H + 6m2J + 2m2J + 2(P2 + 3m2)L 

+ 2(P2 + 2m2)N + 4m20 

+ 3m2Q + 4m2U = 2, 

CilCi~ : J + L + N + 0 + 2Q = 0. 

CiiCi; : m2(A + B + C + D) + 2m2J APPENDIX V 

+ (P2 + 2m2)L + (P2 + 3m2)N 3m2 A = (P2 + 5m2)B _ (P2 + 2m2)C 

CiiCi2Ci4 : (P2 + 2m2)A + 2m2B + p 2C 

+ (P2 + 4m2)F + m2G + (P2 + 2m2)H 

+ (P2 + 2m2)J + m2 K + (P2 + 4m2)M 

+ (P2 + m2)p + 3m2R + m2S 

+ (P2 + 2m2)T = 0, 

CiiCi2Ci5 : (P2 + 2m2)A + 2m2B 

+ m2
C + (P 2 + m2)D 

+ (P2 + 4m2)F + (P2 + 2m2)M 

+ (P2 + 3m
2)(N + 0 + U) = 0, 

CiiCi2Ci3 : (P2 + 2m2)A + 2m2B + p 2D 

+ (P2 + 4m2)F + (P2 + 2m2)G + m2 H 

+ m2J + (P2 + 2m2)K + p 2M + m2p 

+ (P2 + m2)R + (P2 + 2m2)S + m2 T = 0, 

CiiCi4Ci5 : 3m2 A + (P2 + 3m2)B + p 2C 

+ 5m2H + 3m2J + (2p2 + 5m2)J 

+ (P2 + 3m2)L + (P2 + 2m2)N 

+ 2m2(0 + T) + 4m2U = 2, 

CilCi2CiaCis : (P2 + 6m2)F + (P2 + 5m2)G 

+ (2p2 + 5m2)H + 3(P2 + 2m2)J 

B =B, 

C = C, 

m2 D = (P2 + 4m2)B _ (P2 + 2m2)C 

+ (P2 + 2m2)/(3pa + 9m2), 

E = 0, 

3m2F = (P2 + 8m2)B + 2(p2 _ m2)C 

_ [2(P2 _ m2)/(3p2 + 9m2»), 
3m3G = (P2 + 5m2)B + 2(P2 + 2m2)C 

+ (P2 + llm2)/(3p2 + 9m2), 

3m2H = (4p2 + 17m2)B _4(P2 + 2m2)C 

+ [4(P2 + 5m2)/(3p2 + 9m2»), 
3J = 8B - 2C + 1l/(3p2 + 9m2), 

J = B + 2C + 1/(3p2 + 9m2), 

m2K = (P2 + 5m2)B = 2m2C + 4m2/(3p2 + 9m2), 

L = 4B - 2C + 4/(3p2 + 9m2), 

m2 M = (P2 + 4m2)B - 2m2C 

+ (P2 + 4m2)/(3p2 + 9m2). 

N = 2C + 1/(3p2 + 9m2), 

o = 4B - 2C + 6/(3p2 + 9m2), 
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m2p = _(P + 4m2)B + (P2 + 2m2)C 

- (P + 4m2)/(3p2 + 4m2), 

3Q = -16B + 4C - 22/(3p2 + 9m2
), 

m2R = _2(P2 + 4m2)B + 4m2C 

- 2(P2 + 4m2)/(3p2 + 9m2
), 

JOURNAL OF MATHEMATICAL PHYSICS 

m2S = _2(P2 + 4m2)B - 5m2/(3p2 + 9m2), 

m2T = - 2(P2 + 4m2)B 

_ (P2 + 5m2)/(3p2 + 9m2
), 

3m2U = _8(P2 + 5m2)B + 2(2p2 + 5m2)C 

_ (5p2 + 37m2)/(3p2 + 9m2
). 
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The problem of the construction of an additively conserved operator with integral eigenvalues, to 
be identified with the electric charge is solved in complete generality for the groups locally isomorphic 
to U(I) ® SU(n). It is found that the representations fall into classes on which different charge 
operators may be defined. Several results previously obtained for particular classes of representations 
are found here as special cases. We specialize the results to N = 4 and discuss several models presently 
in the literature. 

I. INTRODUCTION 

SYMMETRIES for the strongly interacting par­
ticles beyond that of the familiar eightfold way 

of Gell-Mann and Ne'eman1 have been proposed 
by many authors. In particular we might mention 
models based on U(3),2 Wa,s SU(4),4-7 and Sp(6).8 
Experience with these theories has indicated that 
the requirement that there exist an additively con­
served quantum number with integral eigenvalues, 
to be identified with the electric charge provides 
limitations on the types of models which can be 
considered and it is of interest to determine the 
general form which these limitations take. Discussion 
of this question has been initiated by Hagen and 
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MacfarlaneD who show how to construct an operator 
which satisfies the above criteria for the plurality 
zero representations of SU(n). Okubo, Marshak, 
and Ryan10 have proposed a solution which in­
volves considering U(3) rather than U(l) ® SU(3).11 
In the present work, we discuss the groups locally 
isomorphic to U(l) ® SU(n) using a different 
method and with greater generality than Ref. (9), 
and construct valid charge operators for a much 
wider class of representations. In particular the 
results of Hagen and Macfarlane for plurality zero 
representations are obtained as a special case. 

It is clear that the most general form for the 
charge operator is a linear combination of the diag­
onal generators of the Lie algebra. That is, 

,,-1 

Q = L'Yiy(i) + 'YbB , (1) 
i-I 

where the Y(i) are particular combinations of the 
diagonal generators of the Lie algebra of SU(n) 
defined previously5 and B is the generator of the 

9 C. R. Hagen and A. J. Macfarlane, Phys. Rev. 135, 
B432, (1964) and J. Math. Phys. 5, 1335 (1964). 
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(to be published). 



                                                                                                                                    

POLES IN FEYNMAN DIAGRAMS WITH SEVERAL LOOPS 469 

m2p = _(P + 4m2)B + (P2 + 2m2)C 

- (P + 4m2)/(3p2 + 4m2), 

3Q = -16B + 4C - 22/(3p2 + 9m2
), 

m2R = _2(P2 + 4m2)B + 4m2C 

- 2(P2 + 4m2)/(3p2 + 9m2
), 

JOURNAL OF MATHEMATICAL PHYSICS 

m2S = _2(P2 + 4m2)B - 5m2/(3p2 + 9m2), 

m2T = - 2(P2 + 4m2)B 

_ (P2 + 5m2)/(3p2 + 9m2
), 

3m2U = _8(P2 + 5m2)B + 2(2p2 + 5m2)C 

_ (5p2 + 37m2)/(3p2 + 9m2
). 

VOLUME 6. NUMBER 3 MARCH 1965 

Construction of the Charge Operator for Higher Symmetry Schemes* 

I. S. GERSTEIN 

Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 
(Received 18 September 1964) 

The problem of the construction of an additively conserved operator with integral eigenvalues, to 
be identified with the electric charge is solved in complete generality for the groups locally isomorphic 
to U(I) ® SU(n). It is found that the representations fall into classes on which different charge 
operators may be defined. Several results previously obtained for particular classes of representations 
are found here as special cases. We specialize the results to N = 4 and discuss several models presently 
in the literature. 

I. INTRODUCTION 

SYMMETRIES for the strongly interacting par­
ticles beyond that of the familiar eightfold way 

of Gell-Mann and Ne'eman1 have been proposed 
by many authors. In particular we might mention 
models based on U(3),2 Wa,s SU(4),4-7 and Sp(6).8 
Experience with these theories has indicated that 
the requirement that there exist an additively con­
served quantum number with integral eigenvalues, 
to be identified with the electric charge provides 
limitations on the types of models which can be 
considered and it is of interest to determine the 
general form which these limitations take. Discussion 
of this question has been initiated by Hagen and 

* Supported by the U. S. Atomic Energy Commission. 
1 M. Gell-Mann, Cal. Tech. Synchrotron Lab. Report 

CTSL 20, (1961) (unpublished); Y. Ne'eman, Nucl. Phys. 8, 
222 (1961). 

2 M. Gell-Mann, Phys. Letters 8, 214 (1964); G. Zweig, 
Phys. Rev. (to be published). 

B J. Schwinger, Phys. Rev. Letters 12, 237 (1964), Phys. 
Rev. 135, B816 (1964). 

4 P. Tarjanne and V. L. Teplitz, Phys. Rev. Letters 11, 
447 (1963). 

61. S. Gerstein and M. L. Whippman, Phys. Rev. 136, 
B829 (1964). 

6 B. J. Bjorken and S. L. Glashow, Phys. Letters 11, 255 
1964 

7 D. Amati, H. Bacry, J. Nuyts and J. Prentki, Phys. 
Letters 11, 190 (1964), Nuovo Cimento 34, 1751 (1964). 

8 H. Bacry, J. Nuyts, and L. Van Hove, CERN preprint. 

MacfarlaneD who show how to construct an operator 
which satisfies the above criteria for the plurality 
zero representations of SU(n). Okubo, Marshak, 
and Ryan10 have proposed a solution which in­
volves considering U(3) rather than U(l) ® SU(3).11 
In the present work, we discuss the groups locally 
isomorphic to U(l) ® SU(n) using a different 
method and with greater generality than Ref. (9), 
and construct valid charge operators for a much 
wider class of representations. In particular the 
results of Hagen and Macfarlane for plurality zero 
representations are obtained as a special case. 

It is clear that the most general form for the 
charge operator is a linear combination of the diag­
onal generators of the Lie algebra. That is, 

,,-1 

Q = L'Yiy(i) + 'YbB , (1) 
i-I 

where the Y(i) are particular combinations of the 
diagonal generators of the Lie algebra of SU(n) 
defined previously5 and B is the generator of the 

9 C. R. Hagen and A. J. Macfarlane, Phys. Rev. 135, 
B432, (1964) and J. Math. Phys. 5, 1335 (1964). 

10 S. Okubo, C. Ryan, and R. Marshak, Nuovo Cimento 
34,759 (1964). 

11 In this regard see also I. S. Gerstein and K. T. Mahant­
happa, Phys. Rev. Letters 12, 570 (1964) and Nuovo Cimento 
(to be published). 



                                                                                                                                    

470 1. S. GERSTEIN 

U(l) transformations which we explicitly identify 
with the baryon gauge group. Since the eigenvalues 
of B are integral it is clear that for the purposes 
of finding all possible 'Y i and 'Yb we may require 
o ~ 'Yb < 1. In particular, the case 'Yb = 0 is con­
veniently treated separately from 'Yb ~ O. 

If all the states of a particular representation L 
of the algebra of U(I) @ SU(n) have integral charge 
then, since the adjoint representation is always con­
tained at least once12 in the decomposition L @ Lt 
we must have integral charges for the adjoint rep­
resentation as well. This follows from the fact that 
weights are combined linearly with integral co­
efficients in the decomposition of a direct product 
and, from (1), so is Q. However, the nonzero weights 
of the adjoint representation are the roots of the 
Lie algebra and since for any representation the 
roots are differences of weights, we see that all the 
states of a representation have integral charge if 
and only if the highest weight of that representation 
and the simple roots of the algebra 13 have integral 
charge. It is the latter two requirements that we 
study. 

In the next section, we obtain conditions for 
the charges of an arbitrary representation to be 
integral, first for the case 'Yb = 0 and then for 
o < 'Yb < 1. In Sec. III we consider some specific 
models for the charge operator. In the Appendix 
we consider the problem of finding all homomor­
phisms of R @ SU(n) defined by 

R @ SU(n)/ Ai = F;, (2) 

where Ai is a discrete normal subgroup of R @SU(n), 
and show that this problem is equivalent to that 
solved in Sec. II. The main results of the paper are 
Eqs. (12)-(14) and (17) which allow one to determine 
all possible 'Y's of Eq. (1). 

n. THE CHARGE OPERATOR 

An irreducible representation L, of SU(n) is 
uniquely specified by giving the n - 1 components 
of its highest weight, L. This highest weighe4 can 
be decomposed uniquely as the sum 

.. -1 

£ = Lf3i£(i), (3) .-1 
where f3i are nonnegative integers and the L(i) are 
the fundamental weights. These are the highest 
weights of the n - 1 fundamental representations 

12 J. Ginibre, J. Math. Phys. 4, 720 (1963). 
18 E. B. Dynkin, "The Structure of Semi Simple Algebras," 

A. M. S. Trans. Series 1, Vol. 9 (1962). 
1~ We define the relation > for weights by saying that a 

weight is positive if its last nonvanishing component is > O. 
This simplifies the formulas. 

L CO which are the representations induced on com­
pletely antisymmetric tensors of rank i. L (1), in 
particular, is the defining representation of n X n 
unitary unimodular matrices. In terms of the y(i) 

the highest weights £ (i) take the form 

£(l) = 1/2, 1/3, 1/4, ... , l/n 

£(2) = 0 2/3 2/4 ... 2/n , , , , 
£(3) = 0,0,3/4, ... ,3/n (4) 

£( .. -1) = 0, 0, 0, ... , (n - 1)/n. 

We also need an explicit expression for the n - 1 
simple roots of SU(n) considered as weights for the 
adjoint representation. The simple roots are suffi­
cient since any root (and hence any nonzero weight 
of the adjoint representation) may be written as 
the sum of simple roots with integral coefficients. 
If we call the simple roots l(i) then we have 

l(l) = 1, 0, 0, ... , 0 

l(2) = -t, 1,0, ... ,0 

l(i) = 0,0, ... , -i/(i - 1), 1, .. , , ° 
l(n-l) = 0,0, ... , -en - 2)/(n - 1), 1. (5) 

Corresponding to (3) and (4) we have the charge 
of the highest weight of the representation L 
specified by {f311 f32' ..• , f3 .. -d is 

QL = 'Ylf31/2 + 'Y2(f31 + 2f32)/3 + .. , + 'Y .. -l 

X (f31 + 2f32 + ... + [n - 1]f3 .. -1)/n + 'YbB , (6) 

while for the ith simple weight of (5) 

(7) 

In accordance with the remarks made in the intro­
duction for the charges of all the states of L to be 
integral it is necessary and sufficient for the left­
hand sides of Eqs. (6) and (7) to be integral. 

Let us rewrite Eq. (6) by introducing a new 
parameter, Ai, defined by 

i = 1,2, ... ,n - 2 (8) 

The Ai are thus the parameters which give the 
number of columns in the ith row of the Young 
diagram describing the tensor character of L. 

Some simple manipulation then yields 



                                                                                                                                    

CHARGE OPERATOR FOR SYMMETRY SCHEMES 471 

QL = Xt'Yl + (Xl + X2)(-Y2 - hi) + ... 
+ (Xl + X2 + ... + X .. - l) 

( 
n - 2 ) 

X 'Y .. -l - n _ 1 'Y .. -2 

1 .. -1 

n- " - 'Y .. -1 -- £.oJ Xi + 'YoB. 
n i-I 

Thus considering (7), it is necessary that 

1 .. -1 

n- " I == 'Y .. -1 -- £.oJ Xi + 'YoB 
n i-I 

(9) 

(10) 

be an integer for the charges of L to be integers. 
Let us first consider 'Yo = O. Then we may clearly 

distinguish various possibilities by considering the 
cases 

.. -1 

Ex; = Omod~, 
i-1 K 

(11) 

where K runs through the divisors of n. We remark 
that the quantity L:~:~ X; mod (n) is the plurality 
of the representation L as defined by Hagen and 
MacfarlaneD and is conserved when reducing the 
Clebsch-Gordan series of an inner product. Thus 
if a representation L, given by a set of X;, satisfies 
(11) for a given K so will all inner products of L 
times itself and L times the adjoint representation 
[since the adjoint representation satisfies (11) for 
K = 1]. But this is just what is required if L is to 
have integral charges (i.e., all representations in the 
above-mentioned class should have integral charges 
as well). Thus if we call representations of class K 

those which satisfy (11) then we can find a proper 
charge operator for all representations of this class 
(for 'Yo = 0) by solving (7) and (10) for the allowed 
'Y;. Conversely, an integral charge operator for a 
particular representation of class K must also be 
integral for all other representations of this class. 
We will later see that representations of class K are 
actually representations of different, locally isomor­
phic, groups. 

Suppose we fix our attention on representations 
of class K. Then from (10) we immediately have 

'Y .. -l = r .. - 1/(n - 1), 

where r .. _l is an integer such that 

r .. -l = 0 mod K. 

(12) 

(13) 

Then from (7) we obtain the complete solution 

where 

'-1 • .. -I / 
'Y; = ~ L: rj ~ 

j-l 

rj = 0 mod i + 1 i<n-l. 

(I4a) 

(I4b) 

The set (13), (14), and (15) are the most general 
solution to the problem of constructing the charge 
operator for 'Yb an integer. 

Now let us take 'Yo not an integer. It is immediately 
clear that if a solution for the charge operator exists 
it cannot be for a theory in which we may assign 
baryon number arbitrarily to representations of 
SU(n). That is if LB is a representation with integer 
charges for noninteger 'Yb then LB+1 cannot have 
integer charges. Thus the class of representations 
which admit a solution for a given charge operator 
are not representations of a group which has U(I) 
as a direct product factor. Because of the ambiguities 
involved with the automorphisms of the Abelian 
group U(I) it is quite complicated to repeat the 
arguments of the first part of this section here 
although this may be done. Instead we shall make 
use of the results of the Appendix to obtain the 
formula, analogous to (11), which expresses the 
class of representations on which we should define 
the charge operator. This is 

L: X; + b = 0 mod (nIK). (15) 

As in (11), K runs through the divisors of n and we 
have defined b to be the baryon number. 

Now all the arguments establishing (7) and (9) 
as necessary and sufficient conditions for the rep­
resentation LB to have integer charges are still 
valid since the adjoint representation with B = 0 
is contained in the inner product of LB with its 
conjugate. Consider (15) with b = 0 which yields 
all the representations of class K of Eq. (11). Since 
the charge operator is to be integral for all rep­
resentations of class K of (15), we see that for b = 0 
it must be an integral charge operator for all rep­
resentations of calss K of (11) as well, thus the 'Y; 
are given by (14). So for b ~ 0 we have only to 
satisfy 

(r .. -tln) L: X; - 'Ybb = integer, (16) 

where T .. _ l = 0 mod K1 and X; and b satisfy (15). 
The solution to this is clearly 

(17) 

and we thus have the complete solution to the case 
where 'Yo ~ 0 for the class K defined by (15). 

m. DISCUSSION 

We have obtained the most general possibilities 
for constructing a charge operator with integer 
eigenvalues in Sec. II. In general we found that it 
was consistent to ask that the charge operator be 
defined on a class K given by (11) or (15) correspond-
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ing to representations of U(I) Q9 SU(n)IZn'K and 
U<K)(n). [See (AI2) and (AI5).] For a class K, the 
coefficients I'i and I'b are determined by (12)-(14) 
and I'b = integer for U(I) Q9 SU(n)IZn'K, and 
(12)-(14) and (17) for U<K)(n). It is interesting that 
there is a one-to-one correspondence between the 
charge operators defined for I'b = integer and those 
for I'b not an integer. 

Let us consider I'b = 0, r n - 1 = 1, r;"n-l = 0. Then 
we have 

1'1 = III (18) 

which is precisely the solution of Hagen and Mac­
farlane9 for plurality zero representations of SU(n). 
If we consider the solution for I'b :;t. ° corresponding 
to this we get [in addition to (18)] from (17), 

I'b = lin. (19) 

This is the generalization to U(n) of the proposal 
of Okubo, Marshak, and RyanlO for U(3). 

Several models for n = 4 have been proposed 
recently. In particular, in Ref. (5) we have (18) 
and hence a model based on U(I) Q9 SU(4)IZ4. 
In models (1) and (2) of Amati, Bacry, Nuyts, and 
PrentkV (19) obtains so this model is more correctly 
described as based on U(4). For their model (3) 
and (4) 

Q = yO) + !y(2) _ jy(3) + !B (20) 

which follows from 

ra = -2, r z = 3, r 1 = 0. 

Since Ta = ° mod (2), this model accommodates 
integral charges for all representations of U(2) (4). 
Thus the limitation imposed by a fundamental 
quartet for this model [which effectively restricts 
it to representations of U(4)] is, perhaps, too 
confining. 

Although the choice of the charge operator within 
a class K, i.e., the choice of the r;, is independent 
of group theory, the division of representations into 
these classes, which are distinguished by the charge 
operator they admit, is quite interesting. To reverse 
the statement, a choice of charge operator picks 
out a maximal class K and thus defines the particular 
full Lie group which is relevant to the theory being 
considered. Groups of the type U<K) (n) are partic­
ularly interesting since here we have definite rela­
tions (15) between the baryon number b and the 
possible SU(n) representations. 

It should be emphasized that, although the values 
1'1 = 1, 1'2 = ! are well established by experiment, 
if the higher symmetries proposed are meaningful 

then we are allowed any I'a consistent with the 
restrictions found in Sec. II and we should consider 
all their implications to determine which choice is 
actually realized. 
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APPENDIX: LOCAL ISOMORPIDSMS OF 
U(l) ® SU(n) 

In this appendix we consider the significance of 
the classes of representations (11) and (15). It is 
well known that to a given Lie algebra there cor­
responds several, locally isomorphic, Lie groups. 
To a semisimple Lie algebra there corresponds a 
unique, simply connected Lie group G the universal 
covering group. All other Lie groups with the same 
algebra are obtained as factor groups of G. 

Fi = GIA;, (AI) 

where A; is a discrete normal subgroup of G and 
thus is a subgroup of its center, Z. The universal 
covering group for our problem is R Q9 SU(n) 
where R is the additive group of the real numbers. 11 

The discrete central normal subgroups of 
R Q9 SU(n) fall into two distinct classes: 

(1) Those whose generators are products of the 
identity of one of them times a generator of a central 
normal subgroup of the other. 

(2) Those whose generators are products of non­
trivial generators of the central normal subgroups 
of each of them. 

We first consider groups Ai of the type (1) as 
defined above. Since we wish to have integral baryon 
number we take one of the generating elements of 
Ai to be (211", 1) which defines the homomorphism 

R Q9 SU(n) ~ U(l) Q9 SU(n). 

The other generator will be of the form (0, w.). 
Thus U(I) is always a direct factor of the resulting 
group and we can ignore it in the following. We 
emphasize however that this implies that the baryon 
number B is unrelated to any other quantum number 
in this scheme. 

The center Z,. of SU(n) is a discrete group iso­
morphic to the multiplicative group of the nth roots 
of unity and we may denote it as the collection, 

(A3) 

USee L. Michel, Istanbul Summer School (1962) (to be 
published). 
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It is clear that any element W,' except one for which 
i is a divisor of n may be taken as a generator for 
this group. The distinct subgroups of Z,. are given by 

where n/ K, n/A, ... , are integers. The group Znl< is 
composed of elements 

[(W1)" = WK, W2K .•. W(nIK)'K = w,. = 1] = ZnlK (A4) 

and the remarks concerning generating elements of 
(3) also apply here. 

In the defining representation L (1) it is clear that 
the elements Wi are represented by 

(A5) 

where fj = ir'fl
n

. Moreover, from the definition 
of L (I) as the totally antisymetric projection of 
L (1) @ L (1) ••• L (1) 1 times, in this representation 
we have 

L(l): Wi ~ (Ei)ll = Elil, (A6) 

where subscripts on epsilons are always meant to be 
taken modulo n. Now in the representation whose 
highest weight is given by 

L: [81' fJ2' ... ,fJ,.-l] (A7) 

of Eq. (2) we clearly have, using (A6), 

L : Wi ~ (Ei)''l1(Ei)2f1 •••• (E.)(n-1)fln- 11, (A8) 
or 

L: w, ~ Eilfl.+2f1,+",+<,.-1)fI.Jl. (A9) 

In order that all the elements of ZnlK be represented 
by the identity it is clearly necessary and sufficient 
that any generator of Z"IK be represented by the 
identity, or, using (4) 

K(fJ1 + 2fJ2 + ... + n - 1fJ,,) = 0 mod n . (AlO) 

In virtue of the fact that K is a divisor of n we 
obtain that a representation of SU(n) is a representa­
tion of SU(n)/ZnIK if the components of the highest 
weights of the representation satisfy 

n-1 
LifJ. = Omod~. 
i-I K 

(All) 

In terms of the A,(ll) becomes 
,.-1 
LA, = Omod~. 
i-I K 

(A12) 

which is identical to (11) defining the class, K, of 
representations. 

Now let us consider homomorphisms of type (2), 
those for which a generating element of ill contains 
generators of discrete subgroups of both Rand 
SU(n). In order to obtain these homomorphisms 
we must consider the structure of R, the additive 
group of the reals in more detail. The discrete sub­
groups of this group are generated by ao where ao 
is arbitrary. For different ao we generate isomorphic 
groups. A representation of R is given by elab and 
denoted b where b is a fixed number. Now consider 
the generating element 

(27r/n, wK), (A13) 

which generates a discrete subgroup of R X SU(n), 
and the representation defined by the mapping 

(A14) 

of the same group where we multiply the matrix 
L by the factor eiab

• Then using (9) for the rep­
resentative of Wi in the representation L we clearly 
see we must have 

,.-1 

L ifJ, + b = 0 mod ~ 
i-I K 

b = integer 

(AI5a) 

(AI5b) 

in order that the generating element (21) be mapped 
into unity in this representation. Thus we may 
identify b with the baryon number since it is integral. 
(A15a) is recognized as defining a class of representa­
tions just as did (A12). Using the Ai this equation 
becomes (15) which we now see is the correct 
generalization of (11) for the case where we wish 
to include the baryon number in a nontrivial way. 

For the case K =' 1 (AI5a) defines representations 
of U(n). When K ~ 1 we write U(K}(n) to distinguish 
the group defined by (15). Since (23) yields a relation 
between b and the fJ i we see we are not free to assign 
baryon number arbitrarily to the representation L 
of SU(n). Such restrictions are well known in the 
Sakata model based on U(3) and if we wish to 
use the baryon number in our definition of charge 
we must accept them. 

We might mention that there are no other non­
isomorphic solutions to the mapping problem (1) 
with the generating element (13) other than (15). 
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By properly ordering functions of noncommuting operators, a one-to-one transformation between 
operator functions and corresponding functions of commuting algebraic variables can be made. 
With this transformation, boson operator equations such as the Schrodinger equation can be converted 
to differential equations for the transformed functions, the resulting equations containing solely 
commuting variables. Once the solution to the transformed equation is obtained, the inverse trans­
formation may be applied to yield the solution to the original operator equation. The method is 
extended to include angular momentum operators. 

1. INTRODUCTION 

T HE general solution for the time evolution of a 
quantum state is 

(1.1) 

where U llo is the unitary transformation satisfying 
the Schrodinger equation 

in aUII./at = X(t)U llo (1.2) 

subject to the initial condition Ufol • = 1. Formally, 
UtI. may be written as 

U". = p{ exp [ -~ { XCt') dt']}, (1.3) 

where P is the time-ordering operator. If the expo­
nential is expanded and the time ordering is per­
formed, one obtains 

U II • = 1 - i ft X(t') dt' + (_i)2 f' dt" n t. n I. 

x {" dt'X(t')X(t") + ... , (1.4) 

the standard time-dependent perturbation relation. 
There is another method of solution which is 

particularly effective for the solution of operator 
differential equations which involve operators obey­
ing commutator (as opposed to anticommutator) 
relations. This method, which is described here, also 
involves an ordering procedure, but an ordering of 
operators rather than a time ordering. Once the 
ordering has been performed, a unique correspond­
ence can be made between the operator function 
and an equivalent function of commuting variables. 
The operator differential equation is then trans­
formed into an equivalent algebraic variable dif­
ferential equation and can be solved by conven-

tional methods. Once the solution is obtained, it can 
be transformed back to give the operator function 
which is the solution to the original operator dif­
ferential equation. 

2. PRELIMINARY DEFINITIONS 

Let us consider a function of noncommuting op­
erators. For simplicity, we shall consider functions 
of the boson annihilation and creation operators at 
and a:-the extension to other conjugate operators 
such as p and q is straightforward. We consider then 
a general function tea:, ai) of the set of operators 
obeying the commutation relation 

(2.1) 

We define the ordered or normal torm of any 
function fear, ai) of the a; and at operators as the 
form in which all creation operators appear to the 
left of all annihilation operators. Given any function 
tea:, ai), we use the commutation relations to move 
annihilation operators to the right and creation op­
erators to the left to obtain its normal form f"l (a:, a,). 
In general, we can write the normal form of any 
function as 

i(nl( t ) ai, ai 
"'"" tn1 tn. aktn'a"'l 'a"'2. .. * am,. i. = £....i On1.n~"· '",.u:mtm.· "·m-ial a2 ..... 

(2.2) 

Here the coefficients of the expansion may be func­
tions of the time or other parameters. Except for 
the inconsequential ordering among the sequence 
of creation operators or among the sequence of 
annihilation operators, every function has a unique 
normal form. Moreover, since the commutation rela­
tions have been used to put f in normal form, 

r) = i, (2.3) 

in that both represent the same over-all operation. 

474 
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Let us now define a transformation T which 
transforms a function I(a;, ai) of the operators a! 
and ai to a function of new commuting algebraic 
variables a; and ai in the following way: the func­
tion I(a;, ai) is first put into normal form and then 
the substitution of the variable a; as made for the 
operator a; and the variable ai for the operator a •. 
Symbolically, if 

J( a;, ai) = T (f( a;, a.) ) , (2.4a) 

then 

(2.4b) 

normal form. Let us give some illustrations to clarify 
this operation. For example, 

T-1{ - _t2 __ t) t t2 a,ai ajai = ajaj a.ai' 

Again, since the barred variables commute, we see 

T-1 { (al + a / aa;)a2a;2) = T-1 { al a2a;2 + 2a2a;) 

= a:2a2al + 2a:a2' 

Using (2.4a) , (2.4b), (2.7), (2.6), and (2.3) we 
see that 

T-1T{f(a;, ai)} = T-1!"')(a;, ai) = {!"')(a;, a.») 

= m,tn)(a;, ai) = I(a:, ai)' In passing we should note that from (2.2) 

T{al/at) = aT{fl/at, (2.5) Thus 

a relation which is of importance later. 
Since each function has a unique normal form, 

the T transformation results in a one-to-one cor­
respondence between a function of the algebraic 
commuting variables a; and a. and a function of 
the operators a; and ai' We have thus mapped the 
space of operator functions onto the space of al­
gebraic variable functions in a unique way. 

N ext we must consider the inverse transformation 
T-1 applied to a function I(a;, a.) of the algebraic 
variables a;, ai' We first define the normal ordering 
symbol, m" which when applied to a function of the 
operators a; and ai serves to reorder the expression 
without regard to the commutation relations in such 
a way that all annihilation operators appear to the 
right of all creation operators. Thus, for example, 

{ tt) tt m, (alala2a2 = a1a2ala2 

and 

m,{(a. + a/aa;)a2a;} = aiala2 + a2' 

In general, 

m,{f(a;, ai») ¢ I(a;, ai); 

the exception arises when I(a;, a.) is in normal 
form. Then 

(2.6) 

Using the normal ordering symbol, we can write 
the inverse transformation relation as 

That is, the inverse transformation converts a func­
tion of the commuting variables a; and ai into the 
same function of the operators a; and a. with the 
condition that all annihilation operators operate to 
the right-the resulting operator function being in 

(2.8) 

We need the relations which allow us to transform 
the product of two functions of operators, 

t) t t h(a., a. = I(ai' ai)g(a., ai) 

I Cn)( t ) Cn)( t ) = a., a. g a" ai , 
(2.9) 

the latter equality resulting from (2.3), since from 
(2.4) the transformation of h(a;, a,) results in 

h-(-t -) hcn)(-t_) a" a, = a., a. • (2.10) 

We must explore the technique of putting products 
of functions in normal form. To do this, we note 
that to put a.!"') (a;, ai) in normal form we may 
use the familiar relation 

a,jcn)(a;, a,) = tn'(a;, ai)a. + at"')(a:, a.)/aa:. 
(2.11) 

The right-hand side is in normal form as indicated 
by positional ordering. We may write this same 
relation using the normal ordering symbol as 

[a,jcn)(a;, a.)](") = m:{(a. + a/aa;)t"')(a;, a.)} 

and, in general, for any function of annihilation 
operators, 

[g(a,)tn)(a;, a,)](") = m:{g(a. + a/aa;)t"')(a;, a.»). 

Indeed, if we have a function of a; and a, in normal 
form, we find 

[g Cn) (a:, ai)!"') (a:, a,) ),n) 

= m,fgCn)(a;, a. + a/aa:)tn)(a:, ai»)' (2.12) 

As an example, we see 

[(a;a1)(a; + al»),n) = m,{a;(al + a/aa;)(a; + al») 

crtf t t + t 2 + t) t2 t 2 t = vL alai a] a,ai al = al al + alaI + al • 
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By using the Hermitian equivalent to (2.11), 

f (n)( t ) t tf(n)( t ) + f(n)( t )/ ai' ai ai = ai ai, ai a ai, ai aa" 

we can show in the same fashion 

[g'n) (a;, ai)r) (a;, ai ) ),n) 

{ 
(n) t (n) t ~ 

= :n g (ai' ai)f (ai + a/aai, ai)}' (2.13) 

The operation of differentiation is applied to the 
function on the left. Using these two relations 
together with (2.10), we find 

T{g(a;, ai)f(a;, ai)} g(n'(a;, ai + ajaa;)!'n'(a;, ai) 
(2.14) 

or 

U(a;, ai, t) = T- 1 p:1(a;, ai, t)} = :n{O(a;, ai' t)}. 
(3.3) 

An example may serve to clarify the procedure. 
Consider an harmonic oscillator with a time-de­
pendent forcing term. The Hamiltonian is of the form 

X = hwata + lie(t)(at + a) (3.4) 

and we wish to find the unitary transformation such 
that 

(3.5) 

For simplicity we work in the interaction picture 
where 

U - -(iiir)ata('-'.) V 
tto - e 'to. (3.6) 

T{ ( t )f( t )} f(n)(-t+!l/!l- -) (n)(_t -) TheoperatorV sat'sfisth t' g ai, ai ai, ai = ai v Vai, ai g ai' ai . '" 1 e e equa IOn 
(2.15) 

Here the normal ordering symbol has been removed 
since once the transformation to the algebraic var­
iables a; and a. has been made, the ordering is 
immaterial. No matter how this function is written, 
it is the transformation of the normal ordered form 
of the operator function. 

In view of the relations (2.4), we may rewrite 
(2.14) and (2.15) as 

T {g(a;, a;)f(a;, ai) 1 = g(n) (a;, a, + a/ aa;)T {f(a;, a.)} 
(2.16) 

and 

T{g(a;, ai)f(a;, ai) 1 = f'n)(a; + a/aai)T{g(a;, a,) I. 
(2.17) 

3. APPLICATION TO THE SOLUTION OF 
SCHRODINGER'S EQUATION 

Let us consider the solution to the Schrodinger 
equation for the unitary transformation, U(t, to) 

iii au/at = X(a;, ai' t)U, (3.1) 

where X is solely a function of the boson operators 
ai and a; but may depend on time. Let us apply 
the T transformation to both sides of the equation. 
Using (2.5) and (2.16) we obtain 

in aOjat = x(n)(a;, ai + a/aa;, t)O, (3.2) 

where we have let O(a;, ai, t) = T{ U(a;, ai, t)}. 
Equation (3.2) is a differential equation in ordinary 
function space. Once having obtained the solution 
for 0, for which we can employ the standard 
methods for solving partial differential equations, 
we can apply the inverse transformation T- 1 to 
determine the desired unitary transformation in­
volving the noncommuting operators ai and a;. 
Thus, from (2.7), 

in aV"jat = XIV"., (3.7) 
where 

XI = lie(t)(ate iw ' + ae- iW '). (3.8) 

Applying the T transformation to both sides of (3.7) 
we have 

i av/at = e(t)[ate iw ' + ae-iW' + (a/aat)e-'W'jV, 
(3.9) 

with the initial condition V Ct = to) = 1 since we 
demand U, ••• = 1. The equation is easily solved 
by assuming a solution 

(3.10) 

With this substitution (3.9) becomes 

i aSjat = e(t)[ateiw ' + ae- iw , + (as/aat)e-,w'j. 
(3.11) 

We now determine S by demanding a functional 
form which gives algebraically equivalent terms on 
both sides of (3.11). In this case, the form of S 
is quite simple, namely: 

S = A(t) + B(t)a
t + C(t)a. (3.12) 

The initial condition implies A(to)=BCto)=C(to)=O. 
By equating coefficients of similar terms on both 
sides of (3.11) we readily obtain solutions for A, B, 
and C, to give 

V = exp [ -iF(t)a
t 

- iF*(t)a 

-t e(t')F(t'V
iwt

' dt']. (3.13) 

where 

F(t) = r e(t')eiW " dt'. 
" 

(3.14) 

By applying the inverse transformation T-1 we 
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obtain 

V ,.,• = m{exp [ -iF(t)il - iF*(t)a 

- {e(t')F(t')e-·c.,· dt']} 

= exp [-iF(t)at
] exp [-iF*(t)a] 

J.1 = ![c;b. + b;c.], 

J,2 = ti[c;b, - b;e,], 

J. 3 = t[b;b, - e;e,], 

and its magnitude as 

J~ = S;[S. + 1], 

(4.2) 

(4.3) 

X exp [ - { e(t')F(t')e-·c.,· dt' J. (3.15) where 

Equation (3.6) then gives the entire unitary trans­
formation, U" •. 

The T transformation may also be employed to 
determine the time evolution of the density operator. 
We may apply it to the operator equation 

iii iJpliJt = JCp - pJC, (3.16) 

whence by making use of (2.16) and (2.17) we obtain 

iii iJp-liJt = [JC(,,)(_t -+ ~ t) a , a iJat, 

- 11()(n)(_t + ~ - t)]-"" a iJa' a, p (3.17) 

as the differential equation obeyed by the trans­
formed function p = T {p}. This equation is slightly 
more complicated than (3.2) only because the initial 
condition on p is more complicated. 

The same techniques may be employed to obtain 
solutions in antinormal form in which all annihila­
tion operators appear to the left of all creation 
operators in each term. There are times when such 
solutions are useful. 

4. THE TREATMENT OF ANGULAR 
MOMENTUM OR SPIN 

The T-transformation technique as has been de­
veloped so far is applicable only to problems in­
volving solely operators whose commutator is a 
"e" number or at least whose commutator itself 
commutes with its components. Thus it can not 
be applied directly to problems involving angular 
momentum or spin operators. There is, however, 
a standard transformation which converts angular 
momentum operators to boson creation and anihila­
tion operators. For each particle we define boson 
operators b" b;, e" e; such that 

t t 
[b., b;] = [c" e;] = 0,;, 

t 
[b" b;] = [c" c;] = [b"0;] = [b"0;] = o. 

(4.1) 

We then define the components of the angular 
momentum of the ith particle in the (1), (2), and (3) 
directions as1 

1 See A. Messiah, Quantum M echanic8 (Interscience 
Publishers, Inc., New York, 1962), Vol. II, Chap. 13. 

(4.4) 

One finds the eigenvalues of J~ are j.(j. + 1) where 

j, = 0, t, 1, ... , tn, ... , 
and those of J i3 are m •. 

The representation of a state /i., m.) of the ith 
particle in terms of the b. and ej states is 

Ii" m,) = [(i, + mi)!U, - m,)!r1b;(i;+milo;(i,-m,) 100) 

= lUi + mi)(j, - m,». (4.5) 

Here, and in what follows, we adopt the convention 
that the first number labeling the be eigenstate 
signifies the occupation number of the b variables 
while the second, that of the e variables. 

We are always concerned with a small subspace 
of the entire Hilbert space of the be system, namely 
that for a given j value where m takes on values 
m = -j, -j + 1, ... , j - 1, j. Within this 
subspace, the familiar angular momentum commuta­
tion relations are obeyed. Moreover this is a closed 
subspace since no operations involving angular 
momentum operators can transform a state within 
the subspace to a state outside it. 

For spin-t particles where j = !, this is a partic­
ularly simple subspace consisting of two eigen­
vectors, one for j = t, m = +t: 

1+) = 110), 

and the other for j = t, m = -t: 

1-) = 101). 

We see that for the allowed states in the general 
case 

b7c; l(ji + mi)(j, - mi» = 0 if (k + n > 2j. 

Thus any normally ordered product containing more 
than 2j annihilation operators of the same particle 
gives zero independently of whether the operators 
refer to the b or c system. This feature often allows 
considerable simplification in the solution of angular 
momentum problems posed in these variables. 

Once the change to the be boson variables has 
been made, the transformation technique of the 
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previous section may be used. As an example, 
Appendix A presents the solution to the problem 
of a single spin in an rf magnetic field. 

One might inquire as to the applicability of this 
general transformation technique in problems in­
volving fermion operators. Indeed, one can develop 
a parallel formalism to transform fermion operator 
equations into differential equations in algebraic 
variables. If many particles are involved, such a 
transformed equation is, if anything, more difficult 
of solution than the original operator equation. 

Note added in proof: It has been pointed out to 
one of us (W.H.L.) by J. R. Klauder that results 
similar to those reported here are known in field 
theory. See J. L. Anderson, Phys. Rev. 94, 703 
(1954); N. N. Bogoliubov and D. V. Shirkov, In­
troduction to the Theory of Quantized Fields (Inter­
science Publishers, New York, 1959), p. 486. 

APPENDIX A: SEMICLASSICAL TREATMENT OF A 
SPIN IN A MAGNETIC FIELD 

Consider a particle with spin in a magnetic field 

H = [HI cos wt, HI sin wt, Hol. 

The Hamiltonian is 

X = hli[HoO'. + HIO'z cos wt + HIO'v sin wtl. (A2) 

Using the boson transformation of (4.2) and letting 
"(Ho = Wo we have 

X = tliwo(btb - oto) + tli,,(HI(btoe-'t,d + otbei"I). 
(A3) 

We now proceed to solve 

iii aU/at = xU (A4) 

using the T transformation. The transformed equa­
tion is, from (3.2), 

. a-o [wo (b-tb- + b-t a _L _t a) + ,,(HI t-=- --CC-C--
at 2 0[/ act 2 

x (btee-'''I + bt a~t e-·"I + ctbei" I + ct a~t e''') J-o, 
(A5) 

where -0 = T { U}. We make the substitution 

-0 = eS CA6) 

and find (A5) becomes 

. as Wo (b-tb- + b-t as _L _t as) t-=- --cc-c-
at 2 abt a/ 

+ "',BI (btce-''''I + bt as e-'''' I 
2 act 

+ -tb- ,,,I + _t as '''I)' c e c --=-te 
ab 

(A7) 

The solution for S is of the form 

S = (A - l)btb + (B - l)ctc + Dr/c + Elb. (A8) 

The coefficients of (A8) may be found by equating 
the coefficients of similar terms in (A7). The resulting 
differential equations are 

i aA/at = !woA + hHle-' " IE, 

i aB/at = -!woB + hHIe'''ID, 

i aD/at = !woD + hH1e-'''IB, 

i aE/at = -!woE + hHIe'''IA. 

(A9) 

The initial conditions result from the demand that 
U be unity at t = 0, thus S = 0 at t = 0 or 

A(O) = B(O) = 1; D(O) = E(O) = O. (AlO) 

The equations (A9) may easily be solved to give 

A = B* = (-yH l e- iC ,,/2)</W) sin (!Wt + ¢), 

(All) 

where W2 = (,,(H I)2 + (W-WO)2; tan ¢ = i- W/ 
(w-wo). Thus, upon taking the inverse transforma­
tion, we find 

U = m{ exp [(A - l)btb + (B - 1)/c 

+ Dbtc + Ectb}. (A12) 

As yet, we have not made any restriction on the 
spin of the particle. If the particle has spin t, 
CAI2) may be simplified by recognizing that in a 
power series expansion of the exponential all terms 
having more than one (2j = 1) annihilation operator 
gives zero when applied to one of the possible spin 
states. Thus for a spin-t particle in a magnetic field, 
we obtain for the time evolution operator 

U = 1 + (A - l)btb + (B - l)oto + Dbto + Ec:b. 
(AI3) 

Here positioned ordering eliminates the need for 
the normal ordering symbol. 

To obtain a somewhat more familiar result than 
(AI3) may appear, we may compute the probability 
that after a time t the spin is in the lower state 
assuming that initially it started in the upper state. 
That is, we ask for the value of 

/(-/ U /+)/2 = /(01/ U /lOW = /EJ2 

('YHl)2 . 2 {l [( H)2 + ( )2]tt} 
7
C

'Y-=H:::-I-:-;)2"+-'-(W _ Wo/ sm 2 'Y 1 W - Wo . 
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Isoperimetric Problem with Application to the Figure of Cells 
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The Rockefeller Institute, New York, New York 

(Received 11 September 1964) 

Biological applications suggest the following geometrical problem. Consider n three-dimensional 
cells, touching or not, and assume that the free energy of their figure is the sum H = A + aB of the 
area A of the cell walls adjacent to the ambient fluid plus an adjustable constant 0 :::; a :::; 2 times 
the area B of the walls separating two cells. Given the partial volumes of the cells, the problem is to 
describe the shape of the (optimal) figure that renders H as small as possible; the analogous problem 
for two-dimensional cells is the subject of this paper. Geometrical proofs of the following features of 
optimal two-dimensional figures are presented below: (a) the edges bounding the cells are circular 
arcs; (b) at an inside corner, three edges meet at angles 211-/3; (c) at an outside corner, three edges 
meet with outside angle 2 cos-1 a/2; (d) pressures can be ascribed to the cells so that the pressure 
drop across an edge is proportional to its curvature; (e) bubbles appear at each inside corner as a 
passes 31/ 2• All these facts have three-dimensional analogues with similar proofs. 

1. INTRODUCTION 

THE shape of soap bubbles can be predicted by 
solving an isoperimetric problem1

•
2

; this comes 
about by fixing the partial volumes of the bubbles 
and assuming that the free energy is proportional 
to surface area. It is then a geometrical problem 
to find the figure that makes this energy as small 
as possible; see, for instance, Kelvin. 2 A fascinating 
application of this idea is to the equilibrium figure 
of a small number of cells. Thompson (Re£. 3, p. 631) 
found the predicted figures in good agreement with 
the actual shapes in a wide class of cases; see also 
Steinberg4 for the application of such ideas to ex­
plain the ability of cells of several species to sort 
themselves out. 

Surface tension is commonly thought to be pro­
duced by attraction and repulsion between the 
molecules of a cell wall and those of the fluid on 
either side of it. For the soap-bubble problem, it is 
natural to assume like forces throughout the figure, 
but this need not be so for the biological case since 
the ambient fluid is not the same as the fluid inside 
the cells. The simplest expression for the free energy 
of a figure of several cells of the same species that 
accounts for this anomaly is H = A + aB, A being 
the total area of the walls adjacent to the ambient 
fluid and B the total area of the internal walls; 
the adjustable factor a permits us to deal with the 

* Permanent address: Department of Mathematics, 
Massachusetts Institute of Technology, Cambridge, Massa­
chusetts. 

t Supported under Public Health Grant IF3 GM-21, 
390-01; Permanent address: National Cancer Institute, 
National Institutes of Health, Bethesda, Maryland. 

1 R. Courant and D. Hilbert, Methods of Mathematical 
Physics (Interscience Publishers Inc., New York, 1953). 

2 Lord Kelvin, Phil. Mag. 24, 503 (1887). 
a D'A. Thompson, On Growth and Form (Cambridge 

University Press, New York, 1959), 2nd ed. 
• M. Steinberg, Science 141, 401 (1963). 

inside and outside walls on a different footing. Under 
the condition that the number and volumes of the 
cells be constant, the mathematical problem is to 
find the figure of n cells that makes the energy H 
as small as possible; the discussion below is confined 
to two-dimensional figures, though most of the results 
have three-dimensional analogs. 

Given a < 0, H = - 00, while for a ~ 2 an 
optimal figure is n nonoverlapping discs; accordingly 
the interesting case is ° S a < 2. 

Given 0, < a < 2, the edges separating the cells, 
bubbles, and unbounded region of an n-cell optimal 
figure are circular (Sec. 3) filling out a connected 
graph (Sec. 6) j at each corner of this graph three 
edges meet (Sees. 4 and 5); at an inside corner 
three calls meet at angles ill' (Sec. 4), while at 
an outside corner two cells meet a bubble or the 
unbounded region at an outside angle of 2 cos- 1 !a 
(Sec. 5). Quantities playing the role of cell pressures 
are proved to exist and the pressure drop across 
an edge is found to be proportional to its curvature 
(Sec. 7). Bubbles are discussed in Sec. 8 i especially 
it is found that three-sided bubbles must be produced 
at each inside corner as a passes 3t . Section 9 is 
devoted to minimal energy as a function of surface 
tension. Section 10 contains examples and a remark 
on change of phase. Section 11 lists';:' the corre­
sponding facts for three-dimensional figures. 

2. OPTIMAL FIGURES 

A figure is a plane graph with no corners, joined 
by nl piecewise smooth simple edges dividing the 
plane into nz bounded regions and a single un­
bounded region. The outside of the figure is the 
unbounded region together with some (or none) of 
the bounded regions (bubbles), subject to the condi-
tion that no two outside regions be adjacent across 
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FIG. 1. A typical figure with six vertices, 
nine edges, and four regions. 

an edge; the inside of the figure is made up of the 
other bounded regions (cells). An edge or corner 
is outside or inside according as it meets the outside 
or not. A possible figure is shown in Fig. 1; 1, 2, 3, 
are cells, and 4 is either a a cell or a bubble. 

Given a figure of n cells with areas VI, V2, etc., 
let A and B denote the sum of the lengths of its 
outside and inside edges, define the (free) energy 
of the figure to be H = A + aB, and let h be 
the infimum of the energies of such figures: h = 
h(a, Vll Vz, ... , v,,) = a + ab = inf H, thinking 
of a as the ratio of the surface tensions of the inside 
and outside edges. The basic physical assumption 
is that the natural configuration of cells is such as 
to make the energy of the figure as small as possible 
(= h); the basic mathematical assumption is that 
an optimal figure or perhaps several optimal figures 
actually exist. 

Note that a < 0 leads to h == - CX), while for 
a = 0 an optimal figure is a disc divided at pleasure 
into cells with h = 211'(R~ + Ri + ... )\ (v = 1I'R2) , 
and for a 2: 2 it is n nonoverlapping discs with 
h = 211'(R1 + Rz + ... ). Because of this, the condi­
tion 0 < a < 2 is to be understood below. 

3. EDGES ARE CIRCULAR 

Theorem: Each edge of an optimal figure is a 
circular arc (of curvature 2: 0). 

Proof: Choose a point (not a corner) of an edge l' 
and draw about it a little disc A whose perimeter 
cuts l' at just two points but does not meet the 
other edges (Fig. 2). Now draw the (dotted) circular 
arc 1'1 joining these two points and cutting the area 
of the disc in the same proportion as l' does, and 
let 1'2 be the rest of the (dotted) full circle containing 
1'1' According to the classical isoperimetric in­
equality (Ref. 1, p. 97), l' (\ A is longer than 1'1 

unless it coincides with 'Yll because the circle 1'1 +1'2 

FIG. 2. Edge adjustment for the proof 
of circularity. 

encloses the same area as the simple closed curve 
l' (\ A + 1'2' Since the figure is optimal, l' (\ A = 1'11 

and since a locally circular arc is circular in the 
large, the proof is complete. 

4. INSIDE CORNERS 

Theorem: At an inside corner of an optimal figure 
three cells are adjacent along three edges meeting 
at angles of 211'/3. 

Proof: At an inside corner 2: 3 edges meet (Sec. 2), 
so it is enough to prove that the angle between 
adjacent edges is 2: i1l'; for then exactly three 
edges must meet, and if they did not separate 
three distinct cells, one edge could be suppressed, 
diminishing the energy. 

Suppose two adjacent edges meet an angle 
o < 0 j1l' (the case 0 = 0 is left to the reader). 
Draw a little circle l' of radius 0 centered at the 
corner as in Fig. 3, showing the two edges, the 
three adjacent cells (1, 2, 3), the little circle 1', and 
(dotted) modified edges of curvature 0 meeting at 
angles 211'/3 and separating modified cells 1 *, 2*, 3*. 
Note that 1 *, 2*, 3* do not have the same areas 
as 1, 2, 3; this is ignored for the moment. Up to an 
error of magnitude 0(02

), the total length of the 
portions of the unmodified edges inside l' is just 20, 
so their contribution to the energy of the unmodified 
figure is j = 2ao + 0(02

) while the contribution 
of the dotted edges to the energy of the modified 
figure is 

i = ao(sin !1I'tl[sin (j1l' - !o) + 2 sin !O]. 

Now the coefficient of ao/sin !11' in the difference 
i - j is 

f(O) = sin ('111' - jff) + 2 sin !ff - 2 sin 111'; 

this vanishes at 0 = j1l' and its slope is negative 
for 0 ::; 0 < j1l', so the modification diminishes 
the energy for small 0, contradicting the fact that 
the figure was optimal. The proof is now complete ex­
cept that the area imbalance due to the modification 
has to be undone. Consider for this purpose a portion 
of an edge of length 1 (say) and of curvature k 
and bow it out or in, keeping it circular and making 
a small change € in the areas on each side of it; 

2 

FIG. 3. Angle adjustment for the proof 
that inside angles equal 211'/3. 



                                                                                                                                    

ISOPERIMETRIC CELL PROBLEM 481 

its length changes by ±Ek + 0(E2) according as 
the bowing is out or in as a simple geometrical 
argument proves. Now it is clear that since the area 
imbalance of the modified figure is 0(02

) this can 
be adjusted by small bowings of edges at the expense 
of a change of 0(02

) in its energy. But such a change 
is negligible compared to ao(sin 17l')-I(i - j) for 
small 0, so the proof is complete. 

5. OUTSIDE CORNERS 

Theorem: At an outside corner of an optimal figure 
2 cells meet the outside, and the two outside edges 
meet the outward pointing prolongation of the inside 
edge at angles of cos- 1 !a; in particular, the edges 
of an outside region all bulge toward the outside, 
and at each corner (outside or inside) three edges 
meet. 

Proof: cos-1 !a can be guessed by balancing forces 
at the corner, but this is not a mathematical proof. 
Suppose two outside edges meet at an outside corner 
at an angle 0 < 0 < 2 cos-1 !a (the case 0 = 0 
is left to the reader as before). Draw a little circle 
of radius 0 centered at the corner. Draw also (dotted) 
modified edges meeting at angle 2 cos- 1 !a as in 
Fig. 4. Proceeding as in Sec. 4, correct the area 
imbalance and compute the change in energy: this 
change is 

oCsin cos-1 !afl[a sin (cos-1 !a - !O) + 2 sin !O] 

- 2ao + 0(02
), 

and the coefficient of 0 vanishes at 0 = 2 COS-I !a, 
is negative at 0 = 0, and has positive slope between, 
i.e., the modification diminishes the energy if 0 is 
small enough, against the fact that the figure was 
optimal. Now distinguish two cases, according as 
two outside edges (1, 2) meet 2:: 1 inside edges (3) 
as in Fig. 5(a), or 2:: 4 outside edges meet at the 
corner as in Fig. 5(b). For the case of Fig. 5(a), 
the method used above shows that the angles 23 and 
3i adjacent to the outside are both 2:: 71' - COS-I !a, 
and by the argument of Sec. 4 all the other inside 
angles are 2:: i7l'. But such additional angles can­
not be fitted in, so there is just one inside edge, 
and this edge separates two distinct cells, for other­
wise it could be suppressed with an improvement 

FIG. 4. Angle adjustment for the 
proof that outside angles equal 
2 cos-1 !a. 

3 3 

(Y:s< 
2 

FIG. 5. A priori possibilities for cell arrangements at an 
outside corner. 

in energy. Now the outside angle is (exactly) 
2 cos-1 !a, and the two adjacent angles are (exactly) 
71' - cos- 1 !a; therefore the inside edge bisects the 
angle between the outside edges, and the proof is 
complete in this case. As to the other possible situa­
tion at an outside corner, Figure 5(b), since cos-1 

!a > 0, the arc from 1 to 2 plus the arc from 3 
to 4 is less than 271', and supposing 0 = the arc 
from 1 to 2 < 71', the energy can be improved by 
drawing a little disc of radius 0 about the corner 
as in Fig. 5(c), erasing the edges between 1 and 2 
inside the disc, adding the straight edge of the shaded 
part (disconnecting the graph, but no matter), and 
picking up the infinitesimal area imbalance as usual; 
the actual improvement is 

2:: 20(1 - sin to) + 0(02
). 

6. CONNECTEDNESS 

Theorem: The graph of an optimal figure is 
connected. 

Proof: Otherwise the edges fall into 2:: 2 connected 
parts and such a connected part (subfigure) lies in 
an open region A (cell, bubble, or unbounded region). 
Regard this subfigure as floating A and move it 
without changing its shape until it just touches the 
boundary of A. Contact along an arc is impossible 
since that would diminish the energy (a < 2), 
while contact at a single point (new corner) violates 
Sec. 4 or Sec. 5 since four edges cannot meet at 
a corner. The proof is now complete. 

Bubbles, cells, and the unbounded region are simply 
connected; this is just another statement of the 
absence of floating subfigures. 

Theorem: A subfigure of an optimal figure not 
meeting the boundary of the unbounded region is 
bordered by 2:: 3 bounded regions. 
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FIG. 6. Construction for the proof 
that a subfigure is bordered by at least 
three regions. 

Proof: Otherwise it floats (impossible), or is sus­
pended by a single edge (also impossible), or it is 
suspended by two edges in the union of two cells 
(1, ,2) as in Fig. 6. Draw the (dotted) circular arc 'Y 
connecting the suspension points (3, 4) with a mov­
able point 5, slide the subfigure rigidly along 'Y until 
it touches 5, slide the shaded area along 'Y until it 
touches 3, and erase 'Y. This can be done without 
touching the boundary of 1 + 2 if 5 is close enough 
to 4; moreover, the areas of 1 and 2 and the total 
energy are unchanged, so the new figure is optimal. 
But this violates the fact that edges are circular 
(Sec. 2) unless the two suspending edges (and so 
also ,,) lie on a single circle, in which case it is 
permissible to slide the sub figure along this circle 
until it just touches the boundary of 1 + 2; the 
proof is then completed as for floating subfigures. 

7. PRESSURES 

An optimal figure of n cells with areas v = 
(Vll V2, ••• ) is stable if to each u = (u l , U2, ••• ) 

in a small neighborhood of v corresponds an optimal 
figure with n cells, cell areas u, and the same graph, 
with corners and edges close to those of the original 
figure. Given such a stable figure it makes sense 
to label its cells 1, 2, etc. and to speak of the asso­
ciated pressures PI = ah/ av l , P2 = ah/ av2 , etc.; 
we assert that 

Theorem: Pressures exist and if the pressure Po 
of the outside regions is declared to be ==: 0 and 
if the curvature k of an edge is declared to be 
positive or negative according as the edge bulges 
out from or in towards the spectator, then the 
pressure drop across an edge is ak or k according 
as the edge is inside or outside. Also !h = P1V1 + 
P2V2 + .... 

Proof: Consider an outside edge of a stable figure 

FIG. 7. Construction for the proof 
that bubbles are present if a > 3t • 

FIG. 8. The two-cell figure. 

separating a cell (1) from an outside region (0) and 
bow it a little out or in, keeping it circular and chang­
ing the area of cell 1 by a small amount E. Counting 
the curvature k of the edge as positive, the change 
in its length is ±Ek + O(E2

), according aR the edge 
is bowed out or in (this fact was used already in 
Sec. 4), and since the optimal energy h(VI ± E, V2, ••. ) 
cannot exceed the energy of the modified figure, 
one finds 

h(u ± E, V2, ••• ) s h(u, V2, ••• ) ± Ek + O(l) 

(u = VI)' 

Because the figure was stable, this bound holds in 
a small neighborhood of u = VI, and it follows that 
PI = ah/ aVI exists. Once the existence of the pres­
sures of the cells bordering the outside is proved, 
one can proceed across inside edges establishing the 
existence of the pressures of inside cells and verifying 
the pressure drops ale in exactly the same fashion; 
moreover the formula th = PIV 1 + P2V2 + ... 
follows at once from the hact that h is a homogeneous 
function of degree !, i.e., 

h(tVI' tV2, ••• ) = t!h(Vl, V2, ••• ) 

One deduces the following rules. 

(t > 0). 

(1) At an inside corner, the curvatures k12, k23, 

k31 of the three edges, as viewed during a counter­
clockwise circuit, add up to 0: kl2 + k23 + k31 = 0; 
especially, 2 edges have the same (unsigned) cur­
vature if, and only if the other edge is straight. 

(2) At an outside corner, the curvatures klo, k02' 
k21 of the edges, as viewed during a counter clock­
wise circuit passing from cell 1 to the outside (0) 
to cell 2 and back to cellI, satisfy klO+ko2+ak21 =0; 
especially, the outside edges have the same (un­
signed) curvature if and only if the inside edge is 
straight. 

8. BUBBLES 

Theorem: An optimal figure has no inside corners 
if a > 31; this means that bubbles must be present 
for a > 3 t if the figure contains ~ three cells. 

FIG. 9. The three-cell figure (trefoil) at several values of a. 
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®
(O) 2 (@b

l 
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) 2 

3 I 3 I 3 I 

4 4 4 

a~2-

FIG. 10. One of the possible four-cell figures ("switchback") 
at several values of <l. 

Proof: Consider an inside corner, draw about it 
a small circle of radius 0, and introduce a (dotted) 
triangular bubble as in Fig. 7. Up to an error of 
0(02

) including the area imbalance, the energy is 
diminished by 

3ao - 30 sin i1l"/sin br = 30(a - 3t), 

and this is positive unless a ::; 3t , as desired. 

Theorem: Bubbles have ;:::: 3 sides. A bubble of 
m sides cannot occur unless a > 2 sin 11"/ m. 

Proof: Because the sides of a bubble bend in­
wards, m ;:::: 3. During a counterclockwise circuit, 
a unit vector tangent to a bubble rotates through 
the angle 211"; this angle is the sum of m positive 
jumps 11" - 2 cos-1 !a coming from the corners 
and m negative angles coming from the edges, and 
so 211" < m (11" - 2 cos-1 !a), or, what is the same, 

o > cos-1 !a - !11" + 1I"/m = -sin-1 !a + 1I"/m. 
Combining the two preceding items, one finds for 

n ;:::: 3, that bubbles must be present for a > 3t and 
three-sided bubbles cannot be present for a < 3. 
A natural conjecture is that all bubbles are three­
sided, and the fact that shrinking a ;:::: four-sided 
bubble to a point leads to an inside corner at which 
;:::: four cells meet tends to support this idea. But 
catastrophic geometrical changes could occur to 
avoid this, and the proof escapes us. Be that as 
it may, as a decreases a bubble either disappears 
or develops more sides according to the rule 
m > 1I"/sin-1 !a. 

9. ENERGY AS A FUNCTION OF SURFACE 
TENSION 

Given n ;:::: 1 and Vi, V2, ••• , consider h = a + ab 
as a function of 0 ::; a ::; 2 alone and let us prove 

FIG. 11. The 4-flower. 

FIG. 12. The five-cell 
"switchback. " 

a~2sin'ls a~2-

Theorem: That b is decreasing and h is continuous, 
increasing, and concave, with one-sided slopes: 

b(a+) = h+(a) ::; b(a) ::; h-(a) = b(a-); 

in particular, h+ = h- = b(a±) = b(a), i.e., h is 
differentiable, except perhaps at a countable number 
of corners. 

Note that b(a) is the sum of the lengths of inside 
edges of an optimal figure and so is ambiguous if 
several optimal figures exist; thus, h+(a) = b(a+) 
means that as (3 1 a, each possible value of b({3) is 
close to h+(a). A similar ambiguity is present in a(a). 

Proof: H = a({3) + ab({3) is the energy of an 
admissible figure; as such it cannot be smaller 
than h(a), so 

h({3) = a({3) + o:b({3) + ({3 - a)b({3) 

;:::: h(a) + ({3 - a)b({3), 

and using this bound both for a < {3 and a > (3, 
one finds 

b({3) ::; [h({3) - h(a)]/[,8 - a] ::; b(a) , 

or, what is the same, 

b(a + e) ::; [h(a + e) - h(a)]/ e ::; b(a) 

::; [h(a) - h(a - e)]/e ::; b(o: - e), 

from which the stated facts are evident. 

(a < (3), 

(e > 0), 

Actual formulas for n = 2 or 3 show that h has 
no corners (see Sec. 10). Corners probably correspond 
to drastic geometrical changes of the optimal figure 
(see Secs. 7, 8, and 10). Berger6 pointed out that 
if g is the (concave downwards) lower envelope of 
the set R of the points (A, B) [A (B) denotes the 
sum of the outside (inside) edges] corresponding to 
all admissible figures (optimal or not), then hand 
g are related according to the reciprocal rules 

h(o:) = inf [g({3) + a{3], g({3) = sup [h(a) - a{3], 
/32:0 .,2:0 

~@.) (®b) I 
I 4 4 

2 3 2 5 3 
FIG. 13. Two possible 5-flowers. 

a ~ 2 sin'Ys 

5 C. Berger (private communication). 
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(a) (®) 

@
3 

4 2 4 2 

5 I 561 

6 

a~2sin"i6 a ~ 2sin'Ys a =2-

FIG. 14. Two different six-cell "switchbacks" and a six-figure 
at 0/ = 2-. 

connected with the transformation between Gibbs 
and Helmholz free energies in statistical mechanics. 
A corner of the graph of h produces a straight 
segment of the envelope g, and since a point of 
contact between R and its envelope corresponds to 
an optimal figure, a corner of the graph of h 
indicates the existence of 2': 2 optimal figures. 

10. EXAMPLES 

Consider an optimal figure of n cells each of 
area 7r and note from Sec. 8 that bubbles cannot 
be present for ex ::; 2 sin 7r/n. Of the possible figures 
for ex = 0+ (no bubbles) and n ::; 6, most can be 
seen to be nonoptimal on the basis of information 
at hand (for example, according to Sec. 6, a figure 
with two outside corners cannot be optimal for 
n 2': 3); the surviving figures are indicated III 

Figs. 8-16. 
Brief comments on the figures follow. 
Geometrical considerations provide us with simple 

formulas for h for n = 2, 3 assuming that Fig. 8 
and the trefoil (Fig. 9) with identical outside cells 
and radial edges are optimal. Letting fJ cos- 1 !ex, 
we have: 

n = 2 : h = 4[7r(7r - fJ + !ex sin fJ)]!, 

n = 3 : h = {7r(5; - fJ) + ~ (Sin fJ + 2~)!) T 

(@).(braJ I I 4 

25 5 
6 

3 4 2 6 3 

(@dl 
4 6 

2 5 3 

(ex ::; 3!) 

FIG. 15. Four different 
6-flowers. 

{@a)I{@)1 
2 6 2 6 

7 7 
3 5 3 5 

4 4 

a ~ 2 sin '/7 a=2-

FIG. 16. The 7-Hower at 
several values of 0/. 

= 6[7r(7r - 2fJ + ex sin fJ)]1 

note that h (trefoil) does not have a corner at ex = 3!. 
Energies can also be computed for n = 4, 5, 6 for 
the best flowers (Figs. 11, 13a, 15a) under the same 
assumption as for the trefoil, with the result that 
the best of the figures 10(12) is better than the 
best 4(5)-flower of Fig. 11(13a) near ex = 0; this 
is proved by checking that the energy of a pie is 
smaller than that of the best flower (false for n = 6) 
and then using the method of Sec. 4 (see Fig. 3) 
to deform the pie into a figure 10(12) with smaller 
energy. Because of this, it is plausible that Fig. 10(12) 
is optimal for all 0 < ex ::; 2, but this is not proved. 
On the other hand as ex approaches 2 from below, 
an optimal figure probably tends smoothly to n 
nonoverlapping discs. Of the six-celled figures, only 
the figures 14(a) and (b) have the proper inside 
corners (possible bubbles) for this to happen with 
as much touching between cells as possible (smallest 
energy), so if some flowerlike figure such as Fig. 15(d) 
is optimal near ex = 0 (as seems possible, for large 
n if not for n = 6) then the optimal figure undergoes 
some geometrical catastrophe (phase change) at one 
(or several) critical points ex = f3 (0 < f3 < 2); 
probably such a phase change is accompanied by a 
corner of the optimal energy curve. For n = 7, the 
flower (Fig. 16) bursts symmetrically at ex = 2 into 
seven nonoverlapping discs; for large n and ex near 0, 
the optimal figure is probably quite elaborate, but 
after a few phase changes it should begin to look 
like interlocked 7-flowers with bubbles, making an 
approximately hexagonal pattern. 

11. THREE-DIMENSIONAL FIGURES 

Most of the discussion can be adapted to the 
three-dimensional case with small technical changes: 
cell walls are now spherical, 4(3) regions meet at 
each corner (edge) with specified inclinations, the 
walls form a connected surface (no floating sub­
figures), tetrahedral bubbles appear at each inside 
corner as ex approaches 2 from below, pressures can 
be defined as before, and the pressure drop across a 
cell wall is proportional to its curvature; the discus­
sion of h as a function of surface tension is identical. 
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We give the result of an approximate calculation of the phase-space integral 
n..(Q) = f a.(Q - L. k i ) II; a(ki2 - JL.2 )tJ(k.o)f.(k. T ) d.k i, 

which appears when one takes into account the fact that only a part of the kinematically allowed 
phase-space is accessible to particles produced in high-energy collisions, because of the observed small­
ness of their transverse momenta. 

1. INTRODUCTION 

I F one considers a set of secondaries produced in 
a high-energy collision, one finds that only a 

part of the kinematically allowed phase-space is 
accessible to them, due to the limitations imposed 
by the dynamics of the interaction on the transverse 
momenta of the particles. It is an attractive hypo­
thesis, compatible with the present experimental 
evidence,I-4 that the limitation of transverse mo­
menta to small values is the only strong constraint 
imposed by the dynamics on the collision amplitude. 
In other words, it is tempting to suppose that within 
the accessible, limited region of the phase space the 
usual statistical assumption approximately holds, 
namely that the dimension of the phase-space volume 
corresponding to a given physical situation essent­
ially determines the probability of the realization 
of this situation in the collision process. 5 It is obvious 
that if one attempts to reformulate the Fermi 
statistical theory so as to take into account the 
smallness of the transverse momenta of particles, 
one is faced with the necessity of calculating the 
phase-space integrals of the type6 

!2n (Q) = f MQ - ~ k i ) 

X II o(k~ - J.L:)tJ(kiO)fi(kd d4 ki , (1) 
• 

where k'T is the transverse momentum of the ith 
secondary and the cutoff function f.(k iT ) is non­
vanishing for small kiT only. [Subscripts Land T 
denote the longitudinal and the transverse compo­
nent of a vector with respect to an a priori chosen 

1 L. Van Hove, Nuovo Cimento 28 798 (1963). 
2 O. Czyzewski and A. Krzywicki, Nuovo Cimento, 30, 

603 (1963). 
a L. Van Hove, Rev. Mod. Phys. 36, 655 (1964). 
4 A. Krzywicki, Nuovo Cimento 32, 1067 (1964). 
& E. Fermi, Progr. Theoret. Phys. (Kyoto) 5, 570 (1950). 
8 For a discussion of the physical aspects of the problem 

see Ref. 4. 

privileged direction in momentum space (in practice, 
the direction of motion of the incident particle).] 
To discriminate between the consequences of the 
"amputation" of the phase space and some new 
dynamical effects one has to be able to calculate 
effectively the integrals !2n (Q) of the type (1). Such 
a calculation has been outlined in Ref. 4. In this 
paper we give the result of a complete calculation. 
The approximation method used is described shortly 
in Sec. 2. Section 3 contains the approximate formula 
for !2n (Q), in the form which can easily be used in 
computer calculations. 

2. THE METHOD OF CALCULATION 

In order to calculate !2n (Q) it is convenient to use 
the method proposed by Lurcat and Mazur,7 which 
gives !2n (Q) in the form of an expansion in powers 
of n-*. Following Ref. 7 we define 

cf>(a.) = f exp [-a.Q']!2n(Q) d4 Q. (2) 

The function 

!2~a'(Q) = !2n(Q) exp [-a.Q·]/cf>(a.) (3) 

is positive-definite and normalized to unity and, as 
shown by Lurcat and Mazur, may be treated as 
the frequency function of the vector variable Q 
being a sum of n independent random variables k; 
(vector means here 4-vector). Thus !2n (Q) can be 
approximated by an Edgeworth series. It turns out 
that in practical calculations it is sufficient to keep 
the first few terms of the series only. Let us define 

(4) 

Lurcat and Mazur approximation is a pretty good 
one even for small n, if the parameter a, is chosen 
so as to make A. = Q •. In our case the problem 

7 F. Lurcat and P. Mazur, Nuovo Cimento 31, 140 (1964). 
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has less symmetry, which complicates the calcula­
tion considerably. For QT not too large one gets, 
however, a reasonable approximation specifying a. 
by the condition 

A. = Q., v = 0, 1 aT -7 O. (5) 

The result of the calculation, made along the lines 
of Ref. 7 but much more cumbersome due to the 
weaker symmetry of the problem, is given in the 
next section. 

The following notation will be used: 

a = (a~ - aD', 

W = (Q~ - QDt , 

~i(a) = 7r J dkT kTf;(kT)Ko[a(k~ + I-I~)i] 

ihn.mCa) = 7r~~;r J dkT kTf,(kT)(akT)2m 

X [a(k~ + 1-I~)lrK,,[a(k~ + 1-1:)1] 

Z = 2(aQT)2/ { L 'ho.lea)}, , 

(6) 

where Kn(x) denotes as usual the modified Bessel 
function 

KnCx) = l'" e-Z 
oosh. cos (nt) dt. 

3. THE RESULT OF THE CALCULATION 

The condition (5) can be written in the form 

1 '" . W = - - £oJ 'hl.o(a), 
a , 

(7) 

For a determined from the above equation, S} .. (Q) is 
given by the following formula [O(n- t) indicates the 
order of magnitude of terms independent of QT']: 

S} .. (Q) = wn(W)e-iz 

X {I + t G~m) ( : )m + O(n-t)}, (8) 
... -0 Fo•z FI •O 

where 
a3e"W IT tp,(a) 

wneW) = (27r)2(Fo.
2 

_ FI.O)(WFz.o/a)t , (9) 

and 
G(O) = F420 + (3Fz.o + FO•4 - 3FI ,o 2- 6FI •2) 

.. 8F2 •0 3(Fo•2 - F I •O) 

+ 3(F2,O -;; F I •o) _ (Fa.o + 2Fl.O - 2F2 •0 - F2 •2) 

8F1,O 2F2.0(Fo.2 - F I •O) 

+ (Fa.o + 2F1 •O - 2F2.0) _ (F2 •0 - F I •O - F 1 •2) 

4Fz.oF I.O 2Fl.o(F0.2 - F I •O) (10) 

_ 5F~.o + (F2 •0 - F1.o - F 1 •2)(F2.0 - F I •O) 

24F;.o 2F2 •oFl.o(F0.2 - F I •O) 

_ 3(F2 •0 - F 1 •O)2 + Fa.o(Fz,o - F I •O - Fl.2) 
8F2.oF~,o 2F~.0(FO.2 - F I • O) 

(F2 •a - FeD - F I •2)Z 

F2•0(FO.2 - FI •O)2 

+ (Fz.o - F I .o - F I •2) 

4F1 •o 

Fa,o(Fz.o - FI,o) 
4Fl,oF~.o 

(3F2 •0 + FO• 4 - 3FI ,o - 6FI,2) 
3(Fo.z - FJ .0) 

Fa.oCF2 . 0 - FI •o - F1 • 2) + (F2.0 - F1.o - FI.2)2 
- 2 

4Fz•o F 2 •o(Fa•2 - F I •a) 

(F2 •0 - F I •O)(F2 ,o - FI,o - FI •2) 

4F2.oF I •O 

G(2) = (3Fz,o + F O•4 - 3F1.o - 6F1.2) 
.. 24 

(Fz,a - FI,a - F I ,2)2 

8F2o •0 

F's can be expressed in terms of h's as follows: 

FI •O = L 'hI •a 
; 

Fz•o = L ('hz•a + 'hl •o - 'h;.o) 
; 

Fo•z = 1: (! 'ho•t + 'h l •o) 
i 

F3 •0 = 1: ('ha.o + 3 'hz•a + 2 'hto , 
- 3 'h2 •o 'hI.o - 3 'hi,o) 

F I •2 = L ('h2o •o +! 'hl •1 - 'h~.o - ! 'ho.1 'hl,o) , 
F4 •0 = 1: (ih4 •o + 6 'ha•o + 12 'h2 •o 'h~.o + 3 'h2 •o , un 

+ 12 'h~.o - 4 'ha,o 'hI •O - 18 'h2 •0 'hl,o 
. 2 . 2 • 4 

- 3 'hz•o - 3 'hI •O - 6 'hl •o) 

F2 •2 = 1: ('h3 •o + 'hz•o + ! 'hZ •1 + 'h;.o 'ho•l 

• 
+ !'hl •l + 2'h~.o - 3'h2 ,o'hl •o 

- ! 'h2 ,o 'ho•1 - 'hI • l 'hl.o 

- ! 'hl.o 'hO•1 - 'h~.o) 

FO,4 = L (3 'hz.o + i 'hO•2 + 3 'hI'l , 
- ! 'h~.l - 3 'ho•t 'hl,a - 3 ;h~.o). 

The numerical calculation of S} .. (Q) can easily be 
performed with the help of an electronic computer. 
One first solves Eq. (7) to get the value of the param­
eter a. The h's are found by integration from (6). 
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The calculation of F's and of the Q,,(Q) is then 
almost immediate. The calculation is particularly 
fast in the case of equal masses of produced particles 
(see Ref. 4). 

IL, = IL, 

since then only six h's need to be calculated 
(hl •o = -aW In). 

JOURNAL OF MATHEMATICAL PHYSICS 

The accuracy of the approximation is expected 
to be roughly the same as in Ref. 7 for Z :s 1. 
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I. INTRODUCTION 

I N a recent article Jordan, Macfarlane, and 
Sudarshan (JMS)1 described a quantum mechan­

ical model for two interacting, spinless particles 
which is Lorentz invariant, satisfies the asymptotic 
condition, and gives a nontrivial scattering ampli­
tude. The model is based on a pair of unitary wave 
operators which satisfy 

lim e'Hol Q±e-iHol = 1 
, -=Fco 

and establish a unitary equivalence between the 
"free" and interacting generators of the Poincare 
group. In this paper, we describe how a slight 
modification of the formalism gives rise to a bound 
state in the interacting system. The wave operators 
will be slightly altered so that they are no longer 
unitary but only isometric. The complement of the 
range of Q± will be a subspace irreducible under 
the Poincare group and will thus describe an elemen­
tary particle2 with definite mass and spin. The bound 

* Present address: Institution for Theoretical Physics, 
Umel! University, Umel!, Sweden. 

1 T. F. Jordan, A. J. Macfarlane, and E. C. G. Sudarshan, 
Phys. Rev. 133, B487, subsequently referred to as JMS. The 
possibility of having a relatiVIStically invariant description of 
& finite quantum mechanical system was first discussed by 
L. L. Foldy, Phys. Rev. 122, 275 (1961). See also the more 
recent article by R. Fong and J. Sucher, J. Math. Phys. 5, 456 
(1964). 

I See, e.g., S. S. Schweber, Introduction to Relativistic 

8uantum Field Theory (Row, Peterson and Company, 1961), 
hap. 2&. 

state particle will however have an internal structure 
as can be seen by going to the nonrelativistic lhnit. 

The next section contains a short review of the 
JMS model whereupon we discuss the modifications 
necessary to include bound states. This is followed 
by a section on the inverse problem, i.e., the problem 
of fitting an experimentally given scattering am­
plitude with the model. 

The notations used closely adhere to Ref. 1, which 
may be consulted for more detail. 

II. THE CASE OF NO BOUND STATES 

The Hilbert space of two spinless particles with 
masses ml and m2 is the space of functions f~lI P2) 
of the momentum variables PI and P2 with the inner 
product 

(f, g)= J f~l' P2)*g~I' P2) 2~l 2~2 d3
PI d

3
p2' (1) 

where (W1)2= ~1?+(ml)2 and (W2)2= ~2)2+(m2)2. 
The "free" generators of the Poincare group are 
given by 

Ho = WI + W2 , 

Po = PI + P2, 

Jo = -iPI x (iJjiJpI) - ip2 x (iJjiJp2), 

No = -iW1(iJjaPI) - iW2(iJliJp2)' 

(2) 
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This representation is reducible and its reduciton 
implies a direct integration over the total mass and 
a direct summation over the spin.3 This can be 
most easily effected by the introduction of new 
variables, viz., the total mass M, the center of mass 
momentum K and a unit vector e which describes 
the relative spin of the particles. In these new 
variables one has 

I 

f(Pl, P2)=2MiA-l(M) L L f'm(M, K)Y,m(e), (3) 
Z m--l 

(f, g) = 1'" dM f Ij2(M2 + K2)-1 d3K 
",l+m. 

x L f'm(M, K)*g'm(M, K) 
1m 

and 

(Hof)'m(M, K) = (M2 + K2)lflm(M, K), 

(Pof)'m(M, K) = Kf'm(M, K), 

(JOf)'m(M, K) = -iK x (ajaK)f'm(M, K) 

+ (If)lm(M, K), 

(Nof)lm(M, K) = -i(M2 + K 2)1(ajaK)flm(M, K) 

(4) 

(5) 

- [M + (M2 + K2)irlK x (If)'m(M, K), 

where A(M) is a given function and I are the three 
components of the intrinsic angular momentum.2

•
4 

Next JMS define a pair of operators 

where 

Bl(z) = 1 + f dM ~MM)2. (7) 
M-z 

The real functions 91(M) have to be square 
integrable but apart from that are arbitrary. The 
interacting generators L are defined by the unitary 
equivalence 

t L = Q+LoQ+, 

where Lo stands for the set of free or asymptotic 
generators as given by Eq. (5). That this defines 
a scattering system with Q± as a pair of wave 
operators, follows from the equations 

3 See, e.g., the lectures by A. S. Wightman at Les Houches 
in Dispersion Relations and Elementary Particles, edited by 
C. de Witt and R. Omnes, (John Wiley & Sons, Inc., New 
York, 1961). 

4 A. J. Macfarlane, J. Math. Phys. 4, 490 (1963). 

Q±Q: = 1, (8) 

Q:Q± = 1, (9) 

lim eiH
•

, Q±e-iH•
, 

= 1, (10) 
, -=Fco 

which have been shown to hold by JMS. The most 
general scattering operator which is unitary and 
commutes with the free generators of the Lorentz 
group has to be of the form (Sf)'m(M, K) = 
eW1(M)f'm(M, K). This is a consequence of Schur's 
lemma. In our case S comes out to be 

(Sf)'m(M, K) = e2i!I(M)flm(M, K) 
(11) 

= [B,-(M)/B,+(M)]f'm(M, K). 

The model is Lorentz invariant in the sense that 
Q± are the same and satisfy the asymptotic condi­
tion (10) in all frames which can be reached by 
a proper, orthochronous Lorentz transformation. 
This follows from 

(12) 

In addition one has time-reversal invariance. This 
requires 

. sst. 
~, = ~,' (13) 

where i, is the antiunitary operator which cor­
responds to the transformation3 t -+ -t, x -+ x. 
Equation (13) is satisfied in the model simply because 

(14) 

It is tempting to speculate to what extent the 
scattering operator S determines the wave operators 
Q±. The answer to this question seems to be negative; 
if U is a unitary operator which satisfies 

then Q~ = UQ+ and Q': = UQ+St satisfy condition 
(10) and moreover Q~tQ~ = S. That such a U 
exists is very likely. If however Q± are further 
required to satisfy 

(15) 

and 

(16) 

which is certainly sufficient to ensure Lorentz in­
variance; one can argue even if somewhat heurist­
ically that S determines Q± uniquely, and with it 
the generators of the interacting system. To see 
this, suppose r ± and Q± are two pairs of unitary 
operators, both of which satisfy equations (15) and 
(16) and in addition S = Q~Q+ = r ~r +. One has to 
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show that r + = Q+, or r :Q+ = 1. Both Q+ and r + 
commute with Po and also 

r:Q+ = sti,r:Q+i,S, or sr:Q+ = i,r:Q+i,S. 

Ignoring the complications due to the continuous 
nature of the spectrum of M, one may argue from 
the last equation that if 1M, K, l, m) satisfies 

S 1M, K, l, m) = e2i~'(M) 1M, K, l, m) 

then 

sr:Q+ 1M, K, l, m) = e2'~'(M)i,r:Q+i, 1M, K, l, m). 

The most general transformation of this kind which 
commutes with Po has to transform a special vector 
of the form fl'm,(M, K) = OI'IOm'mf(M, K) into 

(r:Q+f)I'm,(M, K) = (J.L(M, K)OI'IOm'mf(M, K) 

+ ~ J.L;(M, K)gj(M, K»), 
where the J.L are some functions of K and M and 
gj(M, K) have to satisfy g;(M', K) = f(M, K), 
where M' is such that ol,(M') = ol(M). The asymp­
totic condition 

t--CD 

then shows that, in fact, 
t 

(r+Q+f)I'm,(M, K) = OI'IOm'mf(M, K), 

m. THE CASE OF BOUND STATES 

1. 

In this section we discuss how the model can be 
extended to describe a situation where the attrac­
tion between the particles is strong enough to pro­
duce bound states in the interacting system. Each 
bound-state particle is characterized by its mass 
Ao < m 1 + m2 and its spin lo. In the previous 
section, the wave operator Q+ was defined in each 
spin subspace with the aid of an analytic function 

BI(z) = 1 + J dM J;(~):, 

where SI(M)2 = (71")-1 1m BI+(M). The wave op­
erator Q+ was then given by Eq. (6). It is clear 
from the proof given in the appendix of JMS that 
properties (9) and (10) hold equally well if one or 
several BI(z) are of the more general form 

BI(z) = 'YI + J dM l;(~):, (17) 

where 'YI is an arbitrary real number. On the other 
hand the property Q±Q: = 1 depends on whether 

or not the BI(z) have zeros on the first Riemann 
sheet. For more general BI(z) of form (17) one has 
only 

(18) 

where Q is a projection operator projecting onto 
the bound states of the system.5 (In nonrelativistic 
potential scattering, the bound states correspond to 
the discrete eigenvalues of the Hamiltonian, whereas 
here we have infinite-dimensional subspaces for each 
discrete eigenvalue of the mass operator.) This 
suggests that to produce a bound state with mass 
Ao and spin lo one has to choose 

J dM SIo(M)2 . I' B () 0 'YI, = - M _ Ao Imp ymg I, Ao = . 

Accordingly, we define the wave operators Q± by 

J (M2 + K2)i 
(Q± f)lm(M, K) = flm(M, K) + dM' M'2 + K2 

X ~1z(M)SI(M') f (M' K) 
B1±(M')(M' - M ± iE) 1m , , 

just as before, but now B1,(Ao) = 0 and BI(z) ~ 0 
if Z ~ Zo. [The model can be generalized to have 
several bound states as long as there is not more 
than one of them in any particular channel. One 
merely has to manufacture zeros in several of the 
functions B I (z).J As we mentioned before, the proofs of 

and 

t 
Q±Q± = 1, 

lim e'H" Q±e- iHo
' = 1 

I+=Fco 

(Sf)lm(M, K) = (Q~Q+f)lm(M, K) 

= [B1-(M)/Bl+(M)]flm(M, K) 

go through as in JMS. We can now evaluate Q±Q:. 
We know that if none of the BI(z) have a zero 
it is equal to the identity. In our case Bdz) has 
got a zero at Ao and this gives rise to an extra term 
when opening up the contour of integration.6 A short 
calculation yields 

r J (M2 + K2)i (Qf)lm(M, K) = Oil, M _ Ao dM' M'2 + K2 

where 

X 9Io(M)9Io(M') f (M' K) (19) 
M' - Ao I,m , , 

(rr 1 = J dM SI,(M)2 . 
(M - Ao)2 

6 See J. M. Jauch, Relv. Phys. Acta 31, 127 (1958). 
• See appendix of JMS. 
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The operator Q satisfies Qt = Q, Q2 = Q as can be 
checked by straightforward computation. Therefore 
it is a projection operator, as it should be and it . ' proJects onto the manifold which describes the com-
posite particle. The equation Qf = f is an integral 
equation in the variable M and its solutions will be 
denoted by to. They are of the form 

f~:'(M, K) = allo(r)t(~; ! ~:r :o~M{o f~:m(K), 
where f~: (K) is an arbitrary function of K. The t· 
are normalized in such a way that 

(f~o, lO) = J d3K(A~ + K2)-t! L: (f~:m(K»"'g~:m(K). 
no 

The manifold to describes a composite particle with 
mass Ao, intrinsic spin lo and momentum distribution 
~:m(K). The dependence on M reveals its internal 
structure as can best be seen by going to the a-func­
tion limit in the center-of-mass system. In this limit 
PI = -P2 and so 

M2 = (PI + P2? = m~ + m; 

+ 2[(m~ + IpI12)1(m~ + Ipd2)t + Ipd2
] 

is a function of /PI/ and in the nonrelativistic approx­
imation 9 I o(M) will give the radial distribution for 
particle 1. 

The generators for the interacting system are 
given by 

HR = O+HoO:, 

PR = O+PoO: = PoR = RPo, 

JR = O+JoO: = JoR = RJo, 

NR = O+NoO:, 

where R is the projection operator R = 1 - Q. 
Notice that at this stage the interacting generators 
are defined only on R. It is natural to extend the 
definition to the whole Hilbert space by putting 

P = Po, J = Jo, HQ = (A~ + P2)tQ, 

and 

(NQf), ... (M, K) = -i(A~ + K2)i(a/aK)(Qf)lm(M, K) 

- [Ao + (A~ + K2)!rIK x (IQf)'m(M, K), 

where I is the spin, With this definition one has 
an irreducible representation of the Poincare group 
on Q, characterized by the mass Ao and spin lo. 

From the equation 

lim e'HoIO",e-,Hol = 1 
'-TCC 

follows 

lim e,Hole-,HIR = 0: 
I-TCX) 

or 

R = lim e,Hle-,Hol 0:. 
e-TeD 

The above equations imply 

lim e,Hle-,Hol = l' ,HI -,HoI rot ro - Rro _ 
lIll e e ~'+U+ - "'+ - 0+, 

'-TCC t-=Fcc 

which shows that the usual requirements of a scat­
tering system are satisfied. 

lV. THE INVERSE PROBLEM 

Equation (11) suggests that a large class of 
scattering amplitudes can be fitted with the model. 
To see this one has to look for the solutions of 
the equation 

eW'(M) = B,_(M)/B,+(M), (20) 

where we assume the phase shifts al (M) to be given 
with the convention -!71' ~ a,(M) < !71'. The B,(z) 
have to satisfy three conditions: 

A) B,(z) are real, analytic, regular apart from 
a cut on the positive real axis, with the branch 
point at m l + m2' 

B) 1m B,+(M) ~ 0 on the cut, 
C) B,(z) -+ '1'1 as /z/ -+ 00, where '1'1 are real 

constants. 

A particular solution of Eq. (20) is the real 
analytic Omnes function7 

Here we assume that a,(M) -+ 0, as M -+ 00, 
sufficiently fast to make a,(M) integrable. The func­
tion D,(z) satisfies (A) and (C), has no zeros, and 
its imaginary part, as z approaches the real axis 
from above, is given by 

1m D,+(M) = -'I'I sin Oz(M) 

X exp [ - (7I'r1p J dM' ~!(~'~ J, (22) 

which shows that if, for alll, one has either -171' ~ 
a,(M) ~ 0 or 0 ~ o,(M) < !71' then with the choice 
'1'1 = + 1 or '1'1 = -1 respectively, 

7,R. Omnes, Nuovp Cimento 8, 316 (1958). The mathe­
matlCll:I content of ~hi.s section.is not ne'Y' Similar equations 
occur m ~onrelatlvlstlc P?tentlal scattenng as discussed by 
M. Gourdm. a!ld A. Martm, Nuovo Cimento 8, 699 (1958). 
The author 18 mdebted to the referee for calling his attention 
to this paper. 
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B,(z) = D,(z) = ±1 + 11"-1 J dM{ =Fsin MM) 

X exp [ _(1I")-lp J dM' ;'(~'~}M - Z)-l} (23) 

is a satisfactory solution with no bound states. 
Incidentally 

s/(M) = 1I"-i( =Fsin MM) 

X exp [ _(1I")-lp J dM' ~!(~'~]r. 
To produce a bound state one has to notice that 

D ( ) M(z) [( )-1 J ~1(M) ] 
I z = N(z) 'YI exp - 11" dM M _ z ' 

where M(z) and N(z) are arbitrary polynomials, is 
also a. solution of Eq. (20). Because of condition 
(C) one must have lim,.I-.'" M(z)/N(z) = 1. Let us 
now suppose that for some l, say lo, ~/.(M) satisfies 
-!11" S ~/,(M) < 0 if m1 + m2 < M S M o and 
o < o,.eM) < !11" if M > Mo, where Mo is a real 
number Mo > ml + m2' The phase shift ol,(M) 
has a jump of magnitude 11" at M = Mo. This intro­
duces a singularity in J dM o,.(M)/(M - z) and 
an easy calculation shows that in the neighborhood 
of Mo 

_1 J dM M~I.(M) '" +log (z - Mo). 
11" - Z 

Consequently, the function 

D () = z - Ao [_( )-1 JdM OI.(M)] 
10 z M 'Y/. exp 11" M z- 0 -z 

remains finite as z -+ Mo and has a zero at Z = Ao, 
Ao < ml + m2 • Its imaginary part on the real axis 
M ;::: ml + m2 is given by 

1m D'o+(M) = -'Ylo(M - Ao)/(M - Mo) sin ~1o(M) 

X exp [ -(1I"r1p J dM' ;,.c~1 ] ;::: 0 (24) 

provided 'Y,. < O. Choosing 'Ylo = -1 we obtain that 

Bl.(z) = Dl.(z) = -1 + ;: J dM (M -~)~/~ Mo) 

X sin ol.(M) exp [ -(1I"r1p J dM' ;,.~'1 ] (25) 

is a satisfactory solution with a zero at z = Ao, i.e., 
with one bound state. 

This kind of argument can be generalized. If ~(M) 
passes through +!11" from the opposite direction, 
the discontinuity in oeM) produces a pole in the 
Omnes function. In general, one can fit with the 

model any set of phase shifts which satisfies in each 
channel n l = 0, n2 S na where n l , n2, and na are the 
number of times ~/(M) passes through 0, h, and 
-!11" respectively. As nl + n2 ?: na - 1 we see 
that a sufficient condition for having a bound state 
is that n 2 - na = -1. 

V. CONCLUSIONS 

Our conclusions may be summarized as follows: 

(1) In the relativistic scattering of two spinless 
particles, in so far as they constitute a closed system, 
the scattering amplitude determines the wave op­
erators 0 .. and the interacting generators uniquely, 
provided 0 .. are further required tosatisfyO+PoO: =Po 
and i,O+i, = 1L which is sufficient to ensure in­
variance under arbitrary Lorentz transformations. 
This we proved only for the case of no bound states 
but analogous results can probably be derived even 
for the more general case. 

(2) The model constructed by JMS can be ex­
tended to include bound states. The projection 
operator associated with the bound-state manifold 
can be calculated, giving a direct relation between 
the scattering amplitude and the structure of the 
composite particle. 

(3) A large class of phase shifts can be fitted with 
the model. The phase shifts have to go to zero 
sufficiently fast and one has to have n1 = 0, n2 S na, 

where nl, n2, and na denote the number of times 
the phase shift goes through 0, !11", and -!11" in any 
particular channel. 

An extension of the model to spin-! particles 
would make it possible in principle to calculate the 
relativistic deuteron wavefunction from proton­
neutron scattering data. However, the spin-! case 
will be more involved, because of the spin degeneracy 
in the reduction of the two-particle space.3

•
4 Work 

on the extension of this model to remove the re­
striction 01 (M) -+ 0 and to include spin ! is now 
in progress. 

Note added after the completion of the manuscript: 
Work on the inclusion of resonance states and the 
removal of the condition ~I(M) -+ 0 as M -+ ex> 

has now been completed. The results are being 
published in the Arkiv for Fysik by the author. 
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The ge?-eral I?ower rn = (rl' - 2rl r2 cos w + r22),," of the distance between two points is expressed 
as a Founer.ser~es L Rn.l(rl, r2) cos lw. Following Sack's method, the radial functions R n.1 are obtained 
as power senes ill r < Ir>. Symmetrical expressions in rl and r. and recurrence relations are found for Rn.l. 

1. INTRODUCTION 

EXPANSIONS for powers of the distance T = 
(r~ - 2TIT2 cos W + r~)t, [cos w = cos 81 cos 82 + 

sin 81 sin 82 cos (4)1 - 4>2)J between two points with 
spherical polar coordinates TI , 81, 4>1 and T2, 82, 4>2 
have been considered by several authors. The expan­
sion of the first inverse power as a series in the 
Legendre coefficients PI (cos w) is well known. 
Chapman 1 generalized this expansion to any real 
power n of the distance for applications in the 
kinetic theory of gases. His method was first 
to express Tn as a binomial series in powers of 
{2rlrd (r~ + r;)} cos w, and then to substitute for 
the powers of cos w the appropriate series of Legendre 
coefficients PI (cos w), and for those of (r~ + rD 
the corresponding binomial series. After rearranging 
and interchanging orders of summation, he could 
prove the validity of his final expansion. Later 
Sack,2 obviously unaware of Chapman's work, used 
a different method to obtain the same results for 
applications in the theory of molecular structure. 
However, Sack obtained further results, e.g., the 
expressions for log T and of certain functions of r. 
He also obtained expansions for rn symmetrical in 
r1 and r 2 • 

It is equally important in the applications to 
obtain a Fourier series expansion for r", i.e., an 
expansion in which the dependence of the different 
terms on w appears as cos lw and which is appro­
priate in two dimensions. Hobson/ obtained this 
expansion for the particular case n = -1 by writing 
r- 1 = (rl - r2e- i ")-ih - '2ei.,)-t, and multiplying 
the two series resulting from the binomial expansions. 
In a previous paper,4 in the course of obtaining an 

* On leave from the Applied Mathematics Department 
Faculty of Science, Cairo University, Cairo, Egypt. ' 

, S. Chapman, Quart. J. Pure Appl. Math. 185, 16 (1916). 
2 R. A. Sack, J. Math. Phys. 5, 245 (1964). 
3 E. W. Hobson, The Theory of Spherical and Ellipsoidal 

Harmonics, (Cambridge University Press, London, 1951), 
p.443. 

• A. A. Ashour, J. Math. Phys. 5, 1421 (1964). 

integral equation for the associated Legendre func­
tion of the first kind, Fourier series for r- I and r- 3 

were obtained in which the dependence on TI and 
'2 appears as series of r;:(l - r~)iP:(1 - r~)i 
(hi and hi are assumed to be both less than 
unity5). 

The object of this paper is to obtain this Fourier 
expansion for r". For this purpose, we have at our 
disposal the three methods of Chapman, Sack, and 
Hobson, all of which may be adapted to the present 
problem. Sack's method is chosen and is followed 
closely, because it does not involve any multiplica­
tion or rearrangement of series. His notation is used 
and reference should be made to his paper (referred 

. to hereafter as I) for definitions not given here. 

2. MATHEMATICAL DERIVATION 

Following the method used in I, we express 
V" = Tn as 

(1) 

where the R's are homogeneous functions of degree 
n in the variables r 1 and r 2 and may be expressed as 

(2) 

since Vn is continuous when T < = O. The function 
Gnl(x) is analytic for 0 ~ x < 1 and hence may be 
expressed as 

G"l(r</r» = I: Cn.1 .• (r</r>)'. (3) . 
If we now define the operator '\7~ as 

'\7 2 =<= ~ + 1 ~ + 1 ~ 
A - a2r, r A ar, r~ aw2 

, 
(4) 

(i.e., '\7~ is the Laplacian operator in the two­
dimensional polar coordinates r~, w), it can be 

6 This is no serious limitation since T, and r. can be ex­
pressed as ax, and ax, where a is chosen such that Ix,l and 
\x21 are both less than one. 
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shown by direct differentiation that 

'\l~V .. = '\l~V .. = n2 V .. _2 • 

From (1) and (5), we then obtain 

fJ
2
Rn .! + 1 fJR ... I _ f R 
fJr~ r 1 ar1 r~"'! 

(5) 

Substituting from (2) and (3) into (6) and equating 
coefficients of equal powers of r </r>, we obtain 

(s + 2)(2l + s + 2)C ... 1. 8 +2 

= (n - s)(n - s - 2l)C ... I ,8' (7) 

3. THE EXPANSION FOR log T 

The function log r is a solution of Laplace's 
equation in either (r" w) or (r2' w). Also 

(logr) .. _o = log (r> - r<) 
'" 1 ( )1 = logr> - E- r< . 1-1 1 r> 

(13) 

Hence it follows that 

logr = logr> - L - r< cos lw. '" 1 ( )1 
I l r> 

(14) 

As a check to previous results and also to verify 
the value of f(l), we find log r using the formula 

log r = lim aa
r
" = L Rlog./(rl, r2) cos lw. (15) 

,,-0 n 1 

For exactly the same reasons given in I, we conclude Equations (12) and (15) give 
from (7) that all coefficients C",l .• vanish when s 
is odd, and that the sequence of even coefficients Rlog,o = log r>, (16) 
start with s = O. Hence R (l/l)( / )1 log, / = - r < r> , l> 0, 

C",/,2. = [( -!n).(l - !n)./v! (l + 1).JCn ,/.o. 

From (2), (3), and (8) we obtain 

(8) in agreement with (14). 

R .. ,/(rl , r2) 

= K(n, l)r~r:-/F(-!n, l- in; 1 + 1; (r</rS) , (9) 

where K(n, l) is a suitable function of nand 1 
to be determined, and F is the Gauss hypergeometric 
function defined in I. It can be proved in exactly 
the same manner as in I that 

K(n, l) = f(l)(-!n)z. (10) 

The determination of the unknown factor f(l) is not 
direct as in 1. This is because in the present analysis 
the expansion of V .. is not preknown for any special 
value of n (except the trivial case n = 0), while 
in I, the expansion for V -I is known. However, by 
examining the expansions for positive even n, we 
find, in view of 

(-2 cos W)"/2 = (2 - O~/2)( - )"/2 cos tnw + 
that 

f(l) = (2 - o~)/l!, (11) 

where 07 is the Kronecker symbol. This result will 
further be verified when considering the expansion 
of log r in the next section. Thus we finally obtain 

Rn.Z(r1 , r 2) = [(2 - o~)/l!](-!n)zr:(r</r»/ 

X F(-!n, l - !n; l + 1; (r<fr»2). (12) 

The above expression agrees, for the special case 
n = -1, with that obtained by Hobson.3 

4. PROPERTmS OF THE RADIAL FUNCTIONS 

n Even Integer 

If n is a positive even integer, then due to the 
factor (-!n)/' the radial functions R .. ,/ vanish 
identically for 1 > in, and hence the series for V .. 
will have !n + 1 terms only. The hypergeometric 
function appearing in each of these terms will be 
a polynomial since both 1 - !n and -!n are either 
negative integers or zero. 

If we apply the transformation (20a) in I to the 
hypergeometric function in the expression (12) for 
R ... /, we obtain 

X F(l + 1 + in, 1 + in; 1 + 1; (r</rS). (17) 

It is clear from (17) that if n is an even negative 
integer, the hypergeometric function involved will 
again break and reduce to a polynomial, but the 
series for V" will be infinite. In particular 

V- 2 = (2 ~ 2) {I + 2 i: (r<)Z cos lw}' (18) 
r> r < 1 r> 

It is clear from (18) that (r; - r;)/(r; 2r1r2 
cos w + r;) is a two-dimensional solution of Laplace's 
equation in the polar coordinates r1 (or r2) and w, 
as can easily be verified by direct differentiation. 

Symmetrical Expressions in 71 and 72 

Application of the transformations (26a) and (26b) 
in I to the hypergeometric function in (12) yields 
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R (r r) = (2 - ~~)( -n/2) 1 (r r )1(r2 + r2),,/2-1 
10.1 I, 2 l! 12 1 2 

(
1 n 1 n 1 4r~r; ) 

X F 2 - 4; , 2 - 4; + 2 ; 1 + 1; (r; + r;)2 , (19a) 

R (r r) = (2 - ~~)( -n/2) 1 Crr )!(r + r )"-21 
".1 I, 2 l! I 2 I 2 

X F(l - ~ , 1 + ~ ; 21 + 1; (rl 4~r;2Y'} (19b) 

These expressions are symmetrical in rl and r2' To 
find the same for log r we use (15) and (19). Thus we 
obtain 

RIOg,1 = -Y{(r~r~2r;)rFa, 1 ~ 1 ; 1 + 1; 

and 

RIOg,Q = ! log Cr~ + r;) 
_ ! t (1/2). ( 2rlr2 )28 (21 a) 

4 .-1 s·s! (ri + r:) 
= log Crl + r2) 

_ ! t (1/2). { 4rlr2}" (21b) 
2 .-1 s-s! (rl + r2)2 • 

The expressions (20) can be summed to yield (16b) 
by means of (B.2.8.6).6 Also the series in (21a) and 
(21b) can be summed to give Rlog,Q = log r> in 
agreement with (16). 

Recurrence Relations 

recurrence relation 

R"+2,1 = {en + 2)/[(n + 2)2 - 4l2]} 

X {2(n + 1)(r~ + r;)R",l - n(r~ - rilR .. - 2 ,/} , (22) 

and of (B.2.S.35) to (19a) yields 

(ri + r;)R",1 = 2(1 + ~Drlr2R",1-l 
+ [en + 2 + 2i)/(n + 2)]R,,+2,!, (1 > 0). (23) 

Also, application of (B.2.9.3) and (B.2.S.45) to (12) 
obtains 

(ri + r;)R",! = (rlrd2i){(n + 21 + 2)R".,I+l 

+ (1 + ~~)(21 - n - 2)R",I-d, (1 > 0). (24) 

From (23) and (24) we finally obtain 

R,,+2./ = [en + 2)/21]rlr 2 

X {Rn,!+l - (1 + ~DR .. ,I-d, (1) 0). (25) 

In Ref. 4, the writer obtained the following expres­
sions for R-l.I and R_3 ,l: 

(268.) 

{
I ·3·5 ... 28 + 1}2 I ! 

X 2.4.6 ... 28 + 21 P2.+1+1(~I)P2.+I+l(~2)' (26b) 

where rA = (1 - ~i)' (X = lor 2 and hI is assumed 
less than one). The expressions (26) may be used 
with the recurrence relations (22)-(25) to obtain 
similar expansions1 for R .... ! when n is an odd integer, 
positive or negative. As an example, we take n = -1 
in (22) and obtain 

(27) 

Application of (B.2.S.31) to (19b) gives the in agreement with (17) for n = 1 and n = -3 
(B.2.9.1). 

6 Bateman Manuscript Project, Higher TranscendentaZ 
Functi<m8, edited by A. ErdeIyi (McGraw-Hill Book Com­
pany, Inc., New York, 1953). Sections and formulas in this 
reference will be referred to (as in I) by the letter B. 

7 Such expressions are useful in finding solutions for 
Fredholm integral equations with kernel Rn,l and interval of 
integration 0 to 1 (or -1 to 1). 
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